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Abstract 
 

 This dissertation is concerned with understanding and analyzing some of the 

effects of diffraction in the near field.  The near field has become of interest at optical 

wavelengths with the advent of promising applications such as near-field optical 

microscopy, near-field spectroscopy and high-density optical data storage. 

 First, a comprehensive review is presented of the scalar and the 

electromagnetic theories of diffraction by an aperture in a planar opaque screen.  Two 

new theorems concerning the behavior of the phase near extrema of the amplitude are 

established that provide a novel insight into the relationship between the amplitude 

and the phase of the field in diffraction patterns. 

 The contributions of homogeneous and of evanescent waves to two-

dimensional near-field diffraction patterns of scalar fields are then examined in detail.  

Exact relations are obtained for calculating these contributions for arbitrary 

propagation distances, along with approximate expressions for the near field.  The 

behavior of the two contributions is illustrated for the case of a plane wave diffracted 

by a slit in an opaque screen. 

 The finite-difference time-domain (FD-TD) method is used examine the 

influence of exact boundary values on the near field for the case of a slit in a thin 

perfectly conducting screen.  The FD-TD numerical results are displayed in color 

images that illustrate the intricate behavior of the amplitude and the phase of the field 

in the vicinity of the slit.  These numerical results are compared with the predictions 

of approximate theories. 

 Some new methods for determining near-fields in rigorous diffraction 

problems involving thin screens are discussed.  Specifically, new approximate 
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theories of diffraction are introduced for both scalar and electromagnetic fields and an 

iterative Fourier-based algorithm is proposed for solving the rigorous boundary value 

problem. 

 In order to understand the effects of an optical vortex on diffraction, the field 

emerging from a spiral phase plate illuminated by a Gaussian beam is examined.  It is 

shown that the amplitude profile of the emerging field changes appreciably over 

propagation distances that are much smaller than the Rayleigh range. 
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CHAPTER 1 
 

INTRODUCTION 

 

 
1.1  DIFFRACTION OF LIGHT 

 

 The early observations of diffraction of light by an obstacle were the primary 

pieces of evidence for the adoption of the wave theory of light.1-3  Despite the fact 

that diffraction phenomena were first described in detail more than three centuries 

ago, the theory of diffraction continues to be a subject of great interest today in many 

branches of both basic and applied physics. 

 The analysis of diffraction of light by an aperture in a planar opaque screen*†  

can be separated into the treatment of two distinct problems‡: the boundary value 

problem and the propagation problem.  The boundary value problem consists of 

determining the boundary value of the field in the plane immediately behind the 

screen for a given illuminating field, given material characteristics of the screen and a 

given aperture shape.  The propagation problem involves finding the field at some 

distance behind the screen from this boundary field. 

                                                                                                                                           
* We take an opaque screen to be one for which the normal component of the energy flux vector is 
identically zero over the portion of the screen in the shadow region.  Therefore, in our terminology, a 
perfectly conducting screen is opaque even though it is highly reflecting.  However, other definitions 
of opaque screens are often used in the literature 

† An extensive review of scalar and electromagnetic diffraction can be found in Ref. 4.  References to 
more recent work are given in Refs. 5-7. 

‡ As is stressed in Ref. 8, this approach can sometimes simplify the analysis of rigorous diffraction 
problems. 
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 The approach one uses to solve the propagation problem is straightforward, 

although there can be some computational difficulties in evaluating the necessary 

integrals: one simply applies the appropriate propagator (diffraction formula) to the 

boundary field.  However, the boundary field itself is very difficult to determine, 

especially if the optical field is treated by full electromagnetic theory.  For the 

idealized case of an electromagnetic field incident upon an infinitely thin perfectly 

conducting screen, analytic solutions have been obtained for a small number of 

geometries*, including the half-plane,8-10 the slit4,11 and the circular aperture4,12,13 

(see also Ref. 6, Chapters 4, 8 and 14), along with the complementary strip and 

circular disk geometries.  But the analytic results for the slit and the circular aperture 

are not always useful in practice, because they contain infinite series that converge 

slowly when the linear dimensions of the aperture are larger than about one 

wavelength. 

 In optics, one usually treats the electromagnetic field by a scalar model and 

one simplifies the boundary value problem by approximating the (scalar) boundary 

field by the unperturbed incident field.  The diffraction theory based on this 

approximation is sometimes called the Rayleigh-Sommerfeld theory of the first kind.  

Two other approximate diffraction theories are also occasionally used:14-18 the 

Rayleigh-Sommerfeld theory of the second kind and the older classic Kirchhoff 

theory.  Even though the boundary fields given by the three theories are very 

different, all three often yield nearly identical results, and agree very well with 

experimental observations, when the size of the aperture and the propagation distance 

are both much larger than the wavelength.  These conditions are usually satisfied in 

conventional optics, but they are not satisfied in near-field optics. 

                                                                                                                                           
* For these same geometries, analytic solutions exist for scalar fields interacting with Dirichlet-type or 
Neumann-type screens. 
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  1.2  THE NEAR FIELD 
 

 For our purposes, the near zone of a radiating, scattering or diffracting object 

in free space will be considered to be the region of space where there are non-

negligible contributions from evanescent waves associated with high spatial 

frequencies of the field.  Specifically, if  is the Fourier transform of the 

field U

˜ U o( fx , fy )

o(x,y) in a plane in close proximity to the object, 

 

  ˜ U o( fx , fy ) =  Uo(x, y)∫∫  ei fxx + fyy( ) dx dy  , (1.2.1) 

 

and if  is the corresponding Fourier transform after a propagation distance 

d, then those spatial frequencies 

˜ U d ( fx , fy )

fx  and fy  for which fx
2 + fy

2 >  k  (k being the 

free-space wavenumber) are exponentially attenuated so that 

 

  ˜ U d ( fx , fy ) =  ˜ U o( fx, fy ) exp −d fx
2 + fy

2 − k2⎡ 
⎣ 

⎤ 
⎦  . (1.2.2) 

 

Hence, for any evanescent waves to be present, the distance d can be at most of the 

order of the wavelength.  The resolution of conventional optical systems is therefore 

fundamentally limited by the wavelength λ, since the propagation distances involved 

are several orders of magnitude larger than λ (see Fig. 1-1). 

 Optical systems that interact directly with the near field can overcome this 

resolution limit.  Recently, there has been considerable interest in these systems19-24 

stemming from promising applications such as near-field optical microscopy, near-

field spectroscopy and high-density optical data storage.  The near-field interaction 

can be accomplished by a variety of schemes, for example, with a sub-wavelength 

fiber optic probe or a sub-wavelength aperture which is scanned at the distance from 

the object that is smaller than the wavelength (see Fig. 1-2).  However, the interaction 
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is very complicated and it is difficult to interpret experimental data.  Consequently, 

there has been significant interest in using rigorous diffraction theories25-28 and 

numerical simulations29,30 to model the sub-wavelength near-field probe and the 

probe-object interaction. 

 It should be pointed out that near-field measurements of antennas have been 

used for several decades as a means of determining far-field radiation patterns.31-33  

However, these types of near-field measurements can be performed at distances 

larger than the wavelength, because evanescent waves are of no importance to the far 

field. 

 

 

 

>>λ >>λ

Source

Object
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Image
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Figure 1-1  Diagram of a conventional optical microscope. 
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Figure 1-2  Diagram of a collection mode near-field scanning optical microscope. 
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  1.3  OVERVIEW OF THE THESIS 
 

 This thesis is concerned with the effects of diffraction in the near field.  

Although the primary motivation for this work is near-field optics, the results of the 

research are also applicable to longer wavelengths of electromagnetic radiation and to 

acoustics.  In fact, the new methods for aperture diffraction presented in Chapter 5 

should be useful for aperture antenna analysis and design. 

 Chapter 2 contains an introductory discussion of the theory of diffraction by 

an aperture in a planar opaque screen for both the scalar and the electromagnetic 

cases.  The discussion provides the theoretical background for the analysis in the 

subsequent chapters.  It includes a review of boundary conditions, exact and 

approximate diffraction formulas, the angular spectrum representation, the Bessel-

beam representation and energy flow.  In addition, two new theorems are proven 

concerning the behavior of the phase of a scalar field near extrema of the amplitude. 

 Chapter 3 examines, in detail, the contributions of homogeneous and of 

evanescent waves to two-dimensional near-field diffraction patterns of scalar fields.  

Exact relations are derived for calculating these two contributions for arbitrary 

propagation distances, along with approximate expressions for the near field.  The 

behavior of the two contributions is illustrated for the case of a plane wave diffracted 

by a slit in an opaque screen, with the use of approximate boundary conditions. 

 In Chapter 4, the near-field in the slit diffraction problem is then reexamined 

with rigorous boundary conditions appropriate to a thin perfectly conducting screen.  

Because it is not efficient to determine the near-field at many points in space from the 

exact series solution, the finite-difference time-domain method is used to numerically 

evaluate the near field.  These numerical results are compared with the predictions of 

the approximate Rayleigh-Sommerfeld theories.  The validity of two theorems of 
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Chapter 2 on the behavior of the phase near extrema of the amplitude is readily 

observed in the near-field diffraction patterns.  

 Chapter 5 introduces some new, relatively untested methods for determining 

the near-field in rigorous aperture diffraction problems.  First, in Section 5.1, two 

new approximate scalar theories of diffraction are described that are based on simple 

modifications of the Rayleigh-Sommerfeld theories.  These new scalar theories are 

formulated for thin Dirichlet-type and Neumann-type screens.  New approximate 

electromagnetic theories of diffraction, intended for thin perfectly conducting 

screens, are also discussed.  Then, in Section 5.2, a new iterative Fourier-based 

algorithm for numerically solving the rigorous boundary value is proposed.  The 

algorithm is obtained from dual integral equations for angular spectrum amplitude of 

the transmitted field and can be implemented for scalar fields incident upon either 

Dirichlet-type or Neumann-type screens, and also for electromagnetic fields incident 

upon perfectly conducting screens. 

 The last main chapter, Chapter 6, deals with a particular structure in the field 

that can only occur in three-dimensional diffraction, namely, the optical vortex or 

screw dislocation.  The main aim of that chapter is to show, by a realistic example 

consisting of a spiral phase plate illuminated by a Gaussian beam, that the presence of 

a vortex can dramatically affect the diffraction of a field over very small propagation 

distances.  Although the distances are larger than the wavelength, they are much 

smaller than the Rayleigh range.  This result is rather surprising since, for most 

beams, the amplitude profile is unchanged for propagation distances considerably 

smaller than the Rayleigh range. 
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CHAPTER 2 
 

APERTURE DIFFRACTION THEORY 

 

 

 In this Chapter, we discuss some fundamental aspects of the theory of 

diffraction of light by an aperture in a planar opaque screen.  We consider the scalar 

and the electromagnetic cases separately and point out some of the basic differences 

between them.  There are, in fact, a number of subtleties contained in the formulation 

of approximate electromagnetic theories of diffraction that are not encountered in the 

scalar case: a naive treatment can yield vector theories that do not satisfy Maxwell's 

equations. 

 Much of the material covered in this chapter is available in the published 

literature.1-6  However, the Bessel-beam representation of the field, which we present 

in Section 2.1.4, is rarely discussed in any detail within the context of aperture 

diffraction.  Furthermore, the analysis in Section 2.1.6 concerning the behavior of the 

phase near extrema of the amplitude appears to be new. 

 

2.1  SCALAR THEORY OF DIFFRACTION 
 

 We shall first assume that the optical field may be described accurately by a 

scalar theory.7-9  One situation where such a description is completely adequate is the 

case of two-dimensional diffraction, discussed in Section 2.2.4. 

 We consider a monochromatic scalar field V , (inc)(r, t) = U(inc)(r)exp{−iω t}

r = (x, y, z), of frequency ω that is incident from the half-space z < 0 upon an aperture 
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A in a thin, planar, opaque screen S (see Fig. 2-1).  We take the screen to be located 

in the plane z = 0 and the rest of space to be free of matter.  If we denote the total 

field by U , then both U  and U  satisfy the Helmholtz equation in free-

space,  

(r) (inc) (r) (r)

 
  ∇2 +  k2( ) U(inc)(r) =  0 , (2.1.1) 

 
  ∇2 +  k2( ) U(r) =  0  , (2.1.2) 

 

where ∇2 ≡ ∂ 2 ∂ x2 +∂ 2 ∂ y2 + ∂2 ∂ z2  is the Laplacian and 
 
  k = ω c = 2π λ  (2.1.3) 
 

is the free-space wavenumber, c being the speed of light in vacuum and λ being the 

wavelength. 
 
 

ρρ'

z
y

x

O

P

r Q

A

S
  

 r − ρ’

 
Figure 2-1  An aperture A (of arbitrary shape) in a planar screen S.  P( ′ ρ ) is a point 
in the aperture plane and Q  is the observation point. (r)
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2.1.1 Boundary Conditions 

 To obtain a solution for the field U , the boundary conditions in the 

aperture plane z = 0 need to be specified.  Since in free space the field and its 

derivatives are continuous at every point, the field inside the aperture and its z-

derivative must also be continuous.  Hence  

(r)

 

    U(ρ,0+ ) =  U(ρ, 0− ) in A (2.1.4) 

and 

  
  

∂ U(ρ, z)
∂ z

 
z= 0+

=  
∂ U(ρ, z)

∂ z
 

z=0–
in A , (2.1.5) 

 

where ρ = (x, y)  and the notation* 0−  (0+ ) indicates the limit as z approaches zero 

from the negative (positive) z-direction.  On the surface of an infinitesimally thin 

opaque screen, two different kinds of boundary conditions are usually applied to a 

scalar field:1,4 Dirichlet conditions, for which the field is zero, 

 

    DU (ρ,0) = 0 on S , (2.1.6) 
 

or Neumann conditions, for which the normal derivative is zero, 
 

  
  

∂ UN (ρ, z)
∂ z

 
z=0

=  0 on S . (2.1.7) 

 

A screen that satisfies Dirichlet boundary conditions is sometimes said to be soft, 

while a Neumann-type one is sometimes said to be hard.  Both may be termed opaque 

because, on S, the normal component of the energy flux vector is identically zero in 

either case (see Section 2.1.6). 
                                                                                                                                           
* We will also use this notation when we are referring to a specific side of the plane z = 0 where the 
screen is located.  Whenever z = 0 appears without a superscript, the equations apply to both sides. 
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 The boundary conditions on the screen together with the continuity conditions 

(2.1.4) and (2.1.5) completely describe what happens to the field as it traverses the 

plane z = 0.  When the continuity conditions are applied to a Dirichlet-type screen, 

one finds that the z-derivative of the field in the aperture is equal to the z-derivative of 

the incident field, 
 

  
  

∂ UD(ρ,z )
∂ z

 
z=0

=  
∂ U(inc)(ρ,z)

∂ z
 
z=0

in A . (2.1.8) 

 

However, when they are applied to a Neumann-type screen, the field in the aperture is 

simply the incident field,  
 

    UN (ρ,0) =  U (inc)(ρ,0) in A . (2.1.9) 

 

 Thus, the aperture diffraction problem is now posed as a mixed* boundary 

value problem.10  For the Dirichlet-type screen, the field must satisfy the mixed 

boundary conditions given by Eqs. (2.1.6) and (2.1.8) whereas, for the Neumann-type 

screen, it must satisfy those given by Eqs. (2.1.7) and (2.1.9).  

 Although at first it might appear that, for a given incident field, the above 

mixed boundary conditions together with the radiation condition should uniquely 

specify the field U  everywhere in space, there can, in general, exist an infinite 

number of solutions for U  (see Ref. 4, Chapter 9, or Ref. 11).  This non-

uniqueness, which is not present in continuously varying media, can occur here 

because of the sharp edge of the aperture.  However, only one of the solutions is 

physically sensible. The others contain singularities that act as primary sources of 

(r)

(r)

                                                                                                                                           
* A boundary value problem is said to be mixed when the field is specified over some portion of a 
surface and its normal derivative is specified over the remaining portion. 
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radiation.  It is possible to choose the correct one by applying the so-called edge 

conditions.4,11,12  We shall not discuss these edge conditions further here, but it 

should be pointed out that the numerical results given in Chapter 4 do, in fact, satisfy 

them. 

 

2.1.2 The Rayleigh Diffraction Formulas 

 Let us suppose that the boundary value problem has been solved and that the 

field U   behind the screen is known for all values of ρ.  Then the field U(ρ,0+ ) (ρ,z)  

in the half-space z ≥ 0 can be determined from Rayleigh's first diffraction 

formula (see Ref. 3, Chapter 5, or Ref. 13), 
 

  U(ρ,z) =  –
1

2π
U( ′ ρ ,0+ ) 

∂ G(ρ − ′ ρ ,z)
∂ z∫  d2 ′ ρ  . (2.1.10) 

 
Here the integration is over the entire plane z = 0+  and the function  
 

  G(ρ,z ) =  
eik ρ 2+  z2

ρ 2 +  z2  , (2.1.11) 

 

ρ = ρ = x2 + y2 , is the three-dimensional free-space Green function that obeys the 

radiation condition at infinity.  Alternatively, if the boundary value of the derivative 

∂ U(ρ, z) ∂ z  z=0+  is known for all values of ρ, U(ρ,z ≥ 0) can be determined from 

Rayleigh's second diffraction formula (see Ref. 3, Chapter 5, or Ref. 13), 

 

  U(ρ,z) =  –
1

2π
 
∂ U( ′ ρ , ′ z )

∂ ′ z 
 

′ z = 0+
G(ρ − ′ ρ , z)∫  d2 ′ ρ  . (2.1.12) 
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Obviously, if both U  and (ρ,0+ ) ∂ U(ρ, z) ∂ z  z=0+  are known exactly, the two 

Rayleigh formulas yield the same result and so does the linear superposition 

 

  
U(ρ,z) =  –

C
2π

U( ′ ρ ,0+ ) 
∂ G(ρ − ′ ρ ,z)

∂ z∫  d2 ′ ρ  

–
(1 − C)

2π
 
∂ U( ′ ρ , ′ z )

∂ ′ z 
 

′ z =0+
G(ρ− ′ ρ ,z)∫  d2 ′ ρ  ,

 

   (2.1.13) 
 
where C is a real constant. 

 

2.1.3 The Angular Spectrum Representation 

 A representation in terms of an angular spectrum of plane waves can often 

provide more insight into the propagation of the field than do the Rayleigh diffraction 

formulas.  With this representation, the field in the half-space z ≥ 0 may be expressed 

in the form13-15 
 

  U(ρ,z) =  a(u⊥ ) ∫ eiku⊥• ρ eikuz z d2u⊥  , (2.1.14) 

 

where the integration extends over all real transverse vectors u .  The 

(generally complex) angular spectrum amplitude a

⊥ ≡ (ux ,uy )

(u⊥)  determines the amplitude of 

the plane wave specified by the unit vector u ≡ (ux,uy ,uz).  The longitudinal 

component of this vector is given by the formulas 

 
  uz  =  1 −  u⊥

2 for  u⊥ =  ux
2 +  uy

2  ≤  1 , (2.1.15a) 

 
  uz  =  i u⊥

2 −  1 for  u⊥ =  ux
2 +  uy

2  >  1 . (2.1.15b) 
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u⊥

Re{eiku•r}

x

0

z0

Re{eiku•r}

Re{eiku•r}

x

0

u

z0

Re{eiku•r}

 
 (a) (b) 
 
Figure 2-2  Illustration of (a) a homogeneous wave propagating along the direction 
specified by the unit vector u and (b) an evanescent wave propagating along the u⊥ -
direction and decaying exponentially along the z-axis. 
 

 

The waves associated with Eq. (2.1.15a) are the usual homogeneous plane waves, 

with phase fronts perpendicular to the vector u [see Fig. 2-2(a)].  Those associated 

with Eq. (2.1.15b) are evanescent (inhomogeneous) plane waves whose phase fronts 

are perpendicular to u  and whose amplitudes decay exponentially with increasing 

distance z from the aperture [see Fig. 2-2(b)]. 

⊥

 By setting z = 0  in Eq. (2.1.14) and performing a Fourier transform 

transform with respect to ρ, one finds that the angular spectrum amplitude a

+

(u⊥)  

may be determined from the field distribution U(ρ,0+ ) via the relation  
 

  a(u⊥) =  
k

2π
⎛ 
⎝ 

⎞ 
⎠ 

2
 ∫ U( ′ ρ ,0+ ) e−iku⊥• ′ ρ d2 ′ ρ  . (2.1.16) 

 
Alternatively, a  may be determined from the derivative (u⊥) ∂ U(ρ, z) ∂ z  z=0+ : 
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  a(u⊥) =  –
i

kuz
 

k
2π

⎛ 
⎝ 

⎞ 
⎠ 

2
 ∫ ∂ U ( ′ ρ , ′ z )

∂ ′ z 
 

′ z = 0+
e−iku⊥• ′ ρ d2 ′ ρ  . (2.1.17) 

 

The relationship between the angular spectrum representation and the Rayleigh 

diffraction formulas can be readily established with the help of Weyl's expansion for 

a spherical wave,13 

 

  G(ρ,z ) =  
eik ρ 2 + z2

ρ 2 +  z2
 =  

ik
2π

1
uz

 ∫ eiku⊥• ρ eikuz z  d2u⊥  . (2.1.18) 

 

By substituting either Eq. (2.1.16) or (2.1.17) into Eq. (2.1.14) and making use of this 

expansion, one obtains Rayleigh's first or second diffraction formula, respectively. 

 

2.1.4 The Bessel-Beam Representation 

 It is possible to introduce a representation that is completely equivalent to the 

angular spectrum representation, but which contains nondiffracting and evanescent 

Bessel-beams instead of homogeneous and evanescent plane waves.  This Bessel-

beam representation16,17 (see also Ref. 5, Section 4.11) is rarely used as a starting 

point in propagation and diffraction problems, but it is often applied to problems of 

scattering and waveguiding by circular cylinders, where it is sometimes called a 

cylindrical wave expansion.18 

 Nondiffracting Bessel beams have themselves been of considerable interest 

recently19-23 because their intensity distribution does not change on propagation and, 

therefore, they have infinite depth of focus.  Unfortunately, they also have infinite 

energy.  Hence, in practice, such beams can only be approximated over a finite 

propagation distance. 
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 To obtain the Bessel-beam representation from the angular spectrum 

representation, we expand the angular spectrum amplitude in a Fourier series over the 

angular domain of u : ⊥

 

  a(u⊥) =  
1

2πu⊥
cn(u⊥) (i)–n  einψ

n=–∞

∞

∑  , (2.1.19) 

 

where cosψ = ux u⊥ , sinψ = uy u⊥  and the expansion coefficients c  are 

related to a  by 

n(u⊥ )

(u )⊥

 

  cn(u⊥ ) =  inu⊥ a(u⊥ ) e– inψ  dψ
0

2π

∫  . (2.1.20) 

 

If we now substitute from Eq. (2.1.19) into Eq. (2.1.14) and change to circular 

cylinder coordinates, [r = (ρ,ϕ, z), ρ = ρ = x2 +  y2 , cosϕ = x ρ , sinϕ = y ρ ], 

we arrive at the expression 

 

 U(ρ,ϕ,z) =  
1

2π
 cn(u⊥) (i)–n  eikuz z 

0

∞

∫ einψ  eiku⊥ ρ cos(ψ −ϕ) dψ
0

2π

∫
⎧ 
⎨ 
⎪ 

⎩ ⎪ 

⎫ 
⎬ 
⎪ 

⎭ ⎪ n= –∞

∞

∑  du⊥  . 

  (2.1.21) 
 

The term in the curly brackets may be rewritten in terms of a Bessel function of the 

first kind and nth order, with the help of the identity24 
 

  Jn(v) =  
(i)−n

π
cos(nψ ) eiv cosψ  dψ

0

π

∫  . (2.1.22) 
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 We then obtain the Bessel-beam representation for a field propagating into the 

half-space z > 0, 
 

  

  

U(ρ,ϕ,z) =   cn(u⊥) Bu⊥

(n )(ρ,ϕ,z) du⊥

0

∞

∫
n= –∞

∞

∑ . (2.1.23) 

 
The functions  
 
  

  
Bu⊥

(n)(ρ,ϕ,z) ≡  Jn(ku⊥ρ) einϕ  eikuz z  (2.1.24) 

 

are nth-order Bessel beams with parameter u⊥  [uz  is given by Eqs. (2.1.15a) and 

(2.1.15b)].  Bessel beams are solutions of the Helmholtz equation that are finite when 

 and that tend to zero as ρ = 0 ρ → ∞ .  For u⊥ ≤ 1, the amplitude distribution of 

 does not change on propagation along z, 
  
Bu⊥

(n)(r)

 
  

 
Bu⊥

(n)(ρ, z)  =  Bu⊥

(n)(ρ,0)  , (2.1.25) 

 

and  may be termed a nondiffracting Bessel beam.  These are the usual 

Bessel beams encountered in discussions of nondiffracting fields. 19-23  On the other 

hand, for u , the amplitude distribution of  decays exponentially along 

the positive z-direction, 

  
Bu⊥

(n)(r)

⊥ > 1
 
Bu⊥

(n)(r)

 

  
  
Bu⊥

(n)(ρ, z)  =  Bu⊥

(n)(ρ,0)  e–kz u⊥
2 − 1  , (2.1.26) 

 

and 
  

 may be termed an evanescent Bessel beam. Bu⊥

(n)(r)

 It should be stressed that, in general, the Bessel-beam representation is not 

paraxial.  In the paraxial regime, the expansion coefficients c  are non-zero only 

for u  and u

n(u⊥ )

⊥
2 << 1 z  can be approximated by uz = 1− u⊥

2 2. 
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 The completeness relation for Bessel functions, 25 
 

  Jn(αρ) Jn( ′ α ρ) dρ
0

∞

∫  =  
δ(α – ′ α )

α
 , (2.1.27) 

 

δ(α)  being the Dirac delta function, can be used to show that the expansion 

coefficients may be expressed directly in terms of the field distribution U(ρ,0+ ) in 

the plane  as  z = 0+

 

  cn(u⊥ ) =  
k2

2π
 u⊥  U(ρ,ϕ,0+ )

0

2π

∫
0

∞

∫  e–inϕ  Jn(ku⊥ρ ) ρ dρ dϕ  . (2.1.28) 

 
They may also be determined from the derivative ∂ U(ρ, z) ∂ z  z=0+  through the 

relationship 
 

 cn(u⊥ ) =  –
ik
2π

 
u⊥

uz
 

0

2π

∫ ∂ U(ρ,ϕ, ′ z )
∂ ′ z 

 
′ z =0+

0

∞

∫ e– inϕ  Jn (ku⊥ρ) ρ dρ dϕ  . 

   (2.1.29) 
 

 As explained in the previous section, the Weyl expansion provides the 

connection between the angular spectrum representation and the two Rayleigh 

diffraction formulas.  In the Bessel-beam representation, that connection can be 

established with the use of Eqs. (2.1.28) and (2.1.29) and the following expansion for 

the free-space Green function: 
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G(r − ′ ρ ) =  
eik r− ′ ρ 

r − ′ ρ 

=  ik  
u⊥

uz
 Jn (ku⊥ρ) Jn (ku⊥ ′ ρ ) ein ϕ − ′ ϕ ( ) eikuz z− ′ z  du⊥

0

∞

∫
n=–∞

∞

∑  .

 

   (2.1.30) 

 

2.1.5 The Rayleigh-Sommerfeld Theories and the Kirchhoff Theory 

 The various diffraction formulas given in Sections (2.1.2)-(2.1.4) make it 

possible to calculate the field U(ρ,z)  throughout the half-space z ≥ 0 from the 

boundary value U  of the field or from the boundary value (ρ,0+ ) ∂ U(ρ, z) ∂ z  z=0+  

of its derivative.  However, the rigorous diffraction problem is posed as a mixed 

boundary problem (see Section 2.1.1) and it is difficult to determine either U(ρ,0+ ) 

or ∂ U(ρ, z) ∂ z  z=0+  for all values of ρ.  Therefore, one often resorts to theories that 

contain approximate boundary values.  We will discuss three of these approximate 

theories here: the Rayleigh-Sommerfeld theories of the first and the second kinds and 

the Kirchhoff theory.26-28  These are the ones used most often in optics.  Although 

they were not originally intended to be used as approximations for field diffracted by 

apertures in Dirichlet-type or Neumann-type screens, they are frequently used for 

such screens, especially in comparisons with exact results (see, for example, Refs. 26 

and 29). 

 In the Rayleigh-Sommerfeld theory of the first kind, the field, denoted by 

U(I )(ρ,z) , is obtained by approximating the boundary values in Rayleigh's first 

diffraction formula (2.1.10) by 

 

    U
(I )(ρ,0+ ) =  0 on S (2.1.31a) 

and 
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    U
(I )(ρ,0+ ) =  U(inc)(ρ,0) in A , (2.1.31b) 

 

i.e., it is assumed that the field on the screen is zero in the shadow region and that the 

field in the aperture is simply the unperturbed incident field.  Therefore, U(I )(ρ,z)  in 

the half-space z ≥ 0 is given by the expression 

 

  

 

U(I )(ρ,z) =  –
1

2π
U (inc)(ρ,0) 

∂ G(ρ − ′ ρ ,z )
∂ z

A
∫   d2 ′ ρ  , (2.1.32) 

 

where the domain of integration extends over the aperture A. 

 The field in the Rayleigh-Sommerfeld theory of the second kind, denoted by 

U(II )(ρ,z ), involves a similar approximation to Rayleigh's second diffraction formula 

(2.1.12): 
 

  
  

∂ U(II )(ρ, z)
∂ z

 
z=0+

=  0 on S (2.1.33a) 

and 

  
  

∂ U(II )(ρ, z)
∂ z

 
z=0+

=  
∂ U(inc) (ρ,z)

∂ z
 
z=0

in A . (2.1.33b) 

 
Hence,  
 

 

  

U(II )(ρ,z ) =  –
1

2π
∂ U(inc)( ′ ρ , ′ z )

∂ ′ z 
 

′ z =0
G(ρ − ′ ρ ,z)

A
∫   d2 ′ ρ   ,     for  z ≥ 0. 

   (2.1.34) 
 

 Lastly, the Kirchhoff theory is obtained from Eq. (2.1.13) with C = 1 2 , viz., 
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U(ρ,z) =  – 1
4π

U ( ′ ρ ,0+ ) ∂ G(ρ − ′ ρ ,z )
∂ z∫  d2 ′ ρ  

– 1
4π

 ∂ U( ′ ρ , ′ z )
∂ ′ z 

 
′ z =0+

G(ρ − ′ ρ , z)∫  d2 ′ ρ  ,
 (2.1.35) 

 
and the following values for U(ρ,0+ ) and ∂ U(ρ, z) ∂ z  z=0+ : 

 

 
  
U(ρ,0+ ) =  0 ,  

∂ U(ρ,z )
∂ z

 
z=0+

=  0 on S 

  (2.1.36a) 
and 

 
  
U(ρ,0+ ) =  U (inc)(ρ,0) ,   

∂ U(ρ,z)
∂ z

 
z=0+

=  
∂ U (inc)(ρ, z)

∂ z
 

z=0
in A . 

  (2.1.36b) 
 
The resulting field U(K )(ρ,z ) is the average of U(I )(ρ,z)  and U(II )(ρ,z ): 
 

  U(K )(ρ,z ) =  
1
2

 U( I)(ρ,z) +  U( II)(ρ, z)[ ] . (2.1.37) 

 

It is well known that the limit of U(K )(ρ,z ) as z → 0+  does not yield the values of 

 and U(ρ,0+ ) ∂ U(ρ, z) ∂ z  z=0+  given by Eqs. (2.1.36a) and (2.1.36b).  However, as 

was stressed by Kottler,30,31 there are no logical inconsistencies if the Kirchhoff 

theory is viewed as a solution to a saltus problem, which involves a discontinuity in 

the field and its z-derivative, rather than a boundary value problem.   

 It should be pointed out that, unlike the Eqs. (2.1.10), (2.1.12) and (2.1.13), 

which all produce the same result for the field distribution in the half-space z ≥ 0 if 

the boundary values U(ρ,0+ ) and ∂ U(ρ, z) ∂ z  z=0+  are known exactly for all 

values of ρ, Eqs. (2.1.32), (2.1.34) and (2.1.37) each produce a different result 

because of the approximations that are made to these boundary values. 
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2.1.6 Energy Flux through the Aperture 

 The time-averaged, real, energy flux vector F  associated with a 

monochromatic, complex, scalar field U  can be defined by the expression32-34 

(r)

(r)
 
  F(r) ≡  iωα U(r)∇U∗(r) −  U∗(r)∇U(r)[ ] , (2.1.38) 

 

which is similar to the definition of the probability current density in quantum 

mechanics.  Here the asterisk denotes the complex conjugate and α is a real, positive 

constant that depends on the choice of units.  From the Helmholtz equation, it can 

readily be shown that, in free space,  obeys the energy conservation law F(r)
 
  ∇ • F(r) = 0  . (2.1.39) 
 

In integral form, this conservation law may be written as 
 
  F(r) • ˆ n  dσ

Σ
∫  =  0  , (2.1.40) 

 

where Σ is a closed surface with outward unit normal   and surface area element ˆ n dσ . 

 If we now consider the total energy flux Ftot  through the aperture A,  

 

  

 

Ftot  =  F(ρ, 0+ ) • ˆ z  d2ρ
A
∫  , (2.1.41) 

 

ˆ z  being a unit vector in the z-direction, and if we choose the surface Σ to consist of 

the aperture A, the opaque screen S and an infinite hemisphere located in the half-

space z > 0, then by virtue of Eq. (2.1.40), Ftot  is equal to the total energy radiated 
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into the far zone*.  With the help of Eqs. (2.1.14) and (2.1.38), we can express Ftot  in 

terms of angular spectrum amplitude a(u⊥)  as 

 

  Ftot  =  8π 2αc uz a(u⊥ )2  d2u⊥

u⊥ ≤ 1
∫  . (2.1.42) 

 

Since the integration in this equation is limited by u⊥ ≤ 1, the total energy flux 

contains only contributions from homogeneous plane waves.  Equivalently, if Eq. 

(2.1.19) is used to expand the angular spectrum amplitude in terms of the Bessel-

beam coefficients c , n(u⊥ ) Ftot  may also be written in the form†  

 

  Ftot  =  4παc  
uz
u⊥

2  cn(u⊥) 2 du⊥

u⊥ ≤ 1
∫

n=–∞

∞

∑  , (2.1.43) 

 

which contains only contributions from nondiffracting Bessel beams. 

 

2.1.7 Coupled Amplitude-Phase Equations and the Behavior of the Phase Near 

 Extrema of the Amplitude 

 We shall digress briefly from our discussion of aperture diffraction to derive 

coupled amplitude-phase equations and to establish two new theorems concerning the 

behavior of the phase near extrema of the amplitude.  These theorems are included 

here because they provide a novel insight into the relationship between the amplitude 

                                                                                                                                           
* It can verified that, for both Dirichlet and Neumann-type screens, the integration over the screen S 
does not yield any contribution, because the z-component of the energy flux vector is identically zero 
on S. 
† Although the factor u  appears in the denominator of the integrand in Eq. (2.1.43) , the integrand is 
usually not singular because the coefficients c  contain a multiplicative factor of u  [see Eq. 
(2.1.20)]. 

⊥

n(u⊥ ) ⊥



  26 

and the phase of diffracted fields.  They can be used to explain a variety of interesting 

phase phenomena including, for example, the so-called phase anomaly that occurs 

near a focus (see Ref. 2, Section 8.8.4). 

 We can express the field in terms of its amplitude  and its phase A(r) φ(r)  as 
 

  U(r) =  A(r) eiφ(r)  , (2.1.44) 
 

where  and A(r) φ(r)  are real functions of position, A = U ≥ 0 , cosφ = Re U{ } U  

and sinφ = Im U{ } U .  Because the field and its derivatives are continuous 

throughout free space,  is continuous at all points and A ∇A, φ  and ∇φ  are 

continuous at points where  is non-zero.  If we substitute from Eq. (2.1.44) into the 

Helmholtz equation, we obtain at once the relation 

A

 

  ∇2A +  2i∇A • ∇φ +  iA∇2φ −  A ∇φ( )2 +  k2A =  0 . (2.1.45) 

 

The real and imaginary parts of Eq. (2.1.45) yield the following coupled amplitude-

phase partial differential equations: 
 

  ∇φ( )2 =  k2 +  
∇2 A

A
 (2.1.46) 

and 
   . (2.1.47) ∇ • A2∇φ⎡ 

⎣ 
⎤ 
⎦  =  0

 

 Equations (2.1.46) and (2.1.47) are completely equivalent to the Helmholtz 

equation.  The same equations appear in the derivation of geometrical optics from 

wave theory,35,36 in which case the short-wavelength limit k  is of interest.  In → ∞
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this limit, Eq. (2.1.46) becomes the usual eikonal equation of geometrical optics* (see 

Ref. 2, Chapter 3 or Ref. 5, Chapter 2).  However for finite k, if the amplitude  is 

known, Eq. (2.1.46) may be viewed as a generalized eikonal equation that includes 

diffraction effects.  It should be mentioned that equations analogous to (2.1.46) and 

(2.1.47) were used in an early attempt to obtain a hydrodynamical model for quantum 

mechanics.37 

A

 Let us substitute from Eq. (2.1.44) into expression (2.1.38) for the energy flux 

vector F.  F then takes the simple form†  
  
   , (2.1.48) F =  2ωα A2∇φ
 
and Eqs. (2.1.46) and (2.1.47) may be rewritten as 
 
  F2 =  4ω 2α 2 k 2A4 +  A3∇2A[ ] (2.1.49) 

and 
  ∇ • F = 0 , (2.1.50) 
 

respectively.  Therefore, since Eq. (2.1.50) is the usual energy conservation law (see 

Section 2.1.6), Eq. (2.1.47) also expresses conservation of energy.  If we write the 

energy flux vector as 
 

  F =  F 
∇φ
∇φ

 , (2.1.51) 

 

we see that the magnitude of F depends only on the amplitude of the field [see Eq. 

(2.1.49)] and its direction depends only on the phase.   
                                                                                                                                           
* In free space, the eikonal equation is ∇φ( )2 =  k 2 . 
† Equation (2.1.48) displays a very simple relationship between the energy flux vector F , the intensity 
I= A2  and the gradient of the phase ∇φ .  One might wonder whether an analogous expression can be 
obtained for an electromagnetic field.  This issue is discussed in Appendix A. 
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 We now consider a point P(rs) where the amplitude A has a non-zero 

extremum.  If A has a maximum at P(rs), then A(rs) > 0 , ∇A(rs ) = 0  and 

∇2A(rs) < 0  (this notation has the obvious meaning: ∇A(rs ) = ∇A(r)  r=rs
, etc.).  

Hence, according to Eqs. (2.1.46) and (2.1.47), 

 

  ∇φ(rs)  <  k      and     ∇2φ(rs ) =  0  . (2.1.52) 

 

However, if A has a non-zero minimum, then A(rs) > 0 , ∇A(rs ) = 0  and ∇2A(rs) > 0  

and, consequently, 
 

  ∇φ(rs)  >  k      and     ∇2φ(rs ) =  0  . (2.1.53) 

 

In the unusual case that the amplitude has a non-zero extremum with ∇2A(rs) = 0, 

one has ∇φ(rs)  =  k . 

 Because the above results are very general, i.e., they apply to any field that 

satisfies the Helmholtz equation, we shall restate them in the following two theorems.  
 

Theorem 1:  Near a point in space where the amplitude has a maximum, the 

Laplacian of the phase is zero and the surfaces of constant phase are spaced further 

apart than the corresponding surfaces for a plane wave with wavenumber k = ω / c . 
 

Theorem 2:  Near a point in space where the amplitude has a non-zero minimum, 

the Laplacian of the phase is zero and the surfaces of constant phase are spaced 

closer together than the corresponding surfaces for a plane wave with wavenumber 

k = ω / c . 
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 The condition ∇2φ(rs ) =  0  ensures that the wavefront has a certain 

"flatness" in the vicinity P(rs), but this does not imply that the wavefront is 

necessarily planar in that region.  For example, if we choose our coordinate system so 

that the origin coincides with the point P(rs) and so that the z-axis is along the 

direction of ∇φ(rs) , the phase could be of the form 

 
  φ(r) =  bz +  d x2 –  y2( ), (2.1.54) 

 

where b > 0 and d are constants and 

 

  b2 =   k 2 +  
∇2 A(0)

A(0)
 . (2.1.55) 

 

In this case, the surfaces of constant phase have saddle points along the z-axis. 

However, the phase could not be of the form 

 
  φ(r) =  ′ b z +  ′ d x2 +  y2( ) , (2.1.56) 

 

i.e., the field near an extemum of the amplitude cannot have a (paraxial) spherical 

wavefront. 
 
 

2.2  ELECTROMAGNETIC THEORY OF DIFFRACTION 
 

 We now turn to the electromagnetic theory of diffraction.1,2,38  We consider 

the case of a monochromatic electromagnetic field of frequency ω  incident from the 

half-space z < 0 upon an aperture A in an opaque planar screen S, which is located in 

the plane z = 0 (see Fig. 2-1).  Throughout free-space, the total electric field 
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E(r)exp{−iω t} and the total magnetic field H(r) exp{−iω t} obey the time-harmonic, 

source-free Maxwell equations (Gaussian units), 

 
  ∇ × E(r) = ikH(r)  , (2.2.1a) 
 
  ∇ × H(r) = – ikE(r) , (2.2.1b) 
 
  ∇ • E(r) = 0  , (2.2.1c) 
 
  ∇ • H(r) = 0 . (2.2.1d) 
 

Consequently, the electric and magnetic fields each also satisfy the Helmholtz 

equation, 
 
  ∇2 +  k2( ) E(r) =  0,  (2.2.2a) 

 
  ∇2 +  k2( ) H(r) =  0  . (2.2.2b) 

 

2.2.1 Boundary Conditions 

 As in the scalar theory, the boundary conditions for the plane z = 0 are 

needed.   The continuity of the electric and magnetic fields in the aperture simply 

requires that 
  

    E(ρ,0+ ) =  E(ρ, 0− ) in A (2.2.3a) 

and 

    H(ρ,0+ ) =  H(ρ,0− ) in A . (2.2.3b) 
 

We will only consider the case of an electromagnetically opaque screen S that is a 

perfect electric conductor.  The tangential components of the electric field and the 

normal component of the magnetic field are then identically zero on the screen: 
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    ̂ z × E(ρ,0) = 0 on S , (2.2.4) 
 

    ̂ z • H(ρ,0) = 0 on S . (2.2.5) 

 

 When Eqs. (2.2.3a) and (2.2.3b) are used in conjunction with Eqs. (2.2.4) and 

(2.2.5), one finds that, in the aperture A, the z-component of the electric field and the 

x- and y-components of the magnetic field are unaltered from their values in the 

absence of the screen.1,38  Hence, if we denote the incident electric and magnetic 

fields by E  and H ,  (inc) (inc)

 

   , (2.2.6)   ̂ z • E(ρ, 0) =  ˆ z • E(inc)(ρ,0) in A
 

   . (2.2.7)   ̂ z × H(ρ, 0) =  ˆ z × H(inc)(ρ,0) in A
 

 Since the electromagnetic field components specified on the screen [Eqs. 

(2.2.4) and (2.2.5)] are different from those specified in the aperture [Eqs. (2.2.6) and 

(2.2.7)], the electromagnetic aperture diffraction problem is a mixed boundary value 

problem.  However, the vector nature of this mixed boundary value problem makes it 

more complicated than the one that occurs in scalar diffraction. 

 It should be pointed out that here, as in the scalar case, the boundary 

conditions together with the radiation condition do not ensure a unique solution for 

the electromagnetic field.  Fortunately, edge conditions can again be invoked to 

determine which solution is physically realizable.4,11,12 

 

2.2.2 Exact Diffraction Formulas 

 If all of the components of electromagnetic field were known in the plane 

 for all values of ρ, we could apply Rayleigh's first diffraction formula (2.1.10) z = 0+
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to each to compute the field in the half-space z ≥ 0.  The corresponding vector 

diffraction formulas would then be of the form 
 

  E(ρ, z) =  –
1

2π
E( ′ ρ ,0+ ) 

∂ G(ρ− ′ ρ ,z)
∂ z∫  d2 ′ ρ  , (2.2.8a) 

 

  H(ρ,z) =  –
1

2π
H( ′ ρ ,0+ ) 

∂ G(ρ − ′ ρ , z)
∂ z∫  d2 ′ ρ  , (2.2.8b) 

 

where here, as in Eq. (2.1.10), the integration is over the entire plane z = 0+  and 

 is the free-space Green function.  We could also use Rayleigh's second 

diffraction formula (2.1.12) to determine E and H: 

G(ρ,z )

 

  E(ρ, z) =  –
1

2π
 
∂ E( ′ ρ , ′ z )

∂ ′ z 
 

′ z =0+
G(ρ − ′ ρ ,z)∫  d2 ′ ρ  , (2.2.9a) 

 

  H(ρ,z) =  –
1

2π
 
∂ H( ′ ρ , ′ z )

∂ ′ z 
 

′ z =0+
G(ρ− ′ ρ ,z)∫  d2 ′ ρ  . (2.2.9b) 

 

 These two sets of diffraction formulas, Eqs. (2.2.8a)-(2.2.9b), are formally 

correct because, in the half-space z ≥ 0, all six components of the electromagnetic 

field satisfy the Helmholtz equation.  However, as a consequence of Maxwell's 

equations, only two components are actually independent.  Equations (2.2.8a)-

(2.2.9b) therefore make use of more information than is necessary.  Furthermore, a 

complication arises if one naively attempts to obtain approximate theories starting 

from Eqs. (2.2.8a)-(2.2.9b): the resulting expressions can violate Maxwell's 

equations.  For example, if in Eq. (2.2.8a) E(ρ,0+ ) is approximated by 
 

    E(ρ,0+ ) =  0 on S (2.2.10a) 
and 
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    E(ρ,0+ ) =  E(inc)(ρ,0) in A , (2.2.10b) 
 

the resulting electric field is not divergence-free*. 

 There are several different electromagnetic diffraction formulas that overcome 

the inadequacies of Eqs. (2.2.8a)-(2.2.9b), but they are all equivalent to each other 

when no approximations are made to the boundary values of the field.  We will only 

discuss some of these diffraction formulas here. 

 It is possible to express the electric and magnetic fields in the half-space z ≥ 0 

in terms of the tangential electric field in the plane z = 0+  by the use of the 

relations42,43 
 

  E(ρ, z) =  
1

2π
∇ × ˆ z × E( ′ ρ ,0+ )[ ] G(ρ − ′ ρ ,z)∫  d2 ′ ρ  , (2.2.11a) 

 

  H(ρ,z) =  –
i

2πk
∇ × ∇ × ˆ z × E( ′ ρ ,0+ )[ ] G(ρ − ′ ρ ,z)∫  d2 ′ ρ  , (2.2.11b) 

 

or in terms of the tangential magnetic field by the use of the analogous relations42,43 
 

  H(ρ,z) =  
1

2π
∇ × ˆ z × H( ′ ρ ,0+ )[ ] G(ρ− ′ ρ ,z)∫  d2 ′ ρ  , (2.2.12a) 

 

  E(ρ, z) =  
i

2πk
∇ × ∇ × ˆ z × H( ′ ρ , 0+ )[ ] G(ρ− ′ ρ ,z)∫  d2 ′ ρ  . (2.2.12b) 

 

It is obvious from the form of Eqs. (2.2.11a)-(2.2.12b) that the fields given by these 

formulas satisfy Maxwell's equations.  The integral that appears in Eqs. (2.2.11a) and 

(2.2.11b) is proportional to the magnetic Hertz vector, whereas the one in Eqs. 

                                                                                                                                           
* Although the flaws of such an approximate theory have been known for a long time, it has been used 
recently in the study of focused fields (see Ref. 6, Section 15.4.1) along with another theory39-41 that 
does not satisfy ∇ . • E = 0
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(2.2.12a) and (2.2.12b) is proportional to the electric Hertz vector.  Linear 

combinations of Eqs. (2.2.11a) and (2.2.12b) and of Eqs. (2.2.11b) and (2.2.12a) can 

also be used when both the tangential electric and the tangential magnetic fields at 

 are known exactly. z = 0+

 Alternatively, instead of Green's functions, an angular spectrum representation 

can be employed, in which case the electric and magnetic fields in the half-space z ≥ 

0 may be written as44-46 
  

  E(ρ, z) =  e(u ⊥) ∫ eiku⊥ •ρ eikuzz  d2u⊥  , (2.2.13a) 

 

  H(ρ,z) =  h(u⊥ ) ∫ eiku⊥• ρ eikuz z  d2u⊥  . (2.2.13b) 

 

As in Section 2.1.3, u  is a unit vector, the integration is over all 

 and u

= (ux,uy ,uz)

u⊥ = (ux ,uy ) z  is given by Eqs. (2.1.15a) and (2.1.15b).  Because of Maxwell's 

equations, the (vectorial) angular spectrum amplitudes e(u⊥)  and h  satisfy the 

relations 

(u )⊥

 

  u × e(u⊥ ) = h(u⊥)  , (2.2.14a) 

  u × h(u⊥ ) = – e(u ⊥) , (2.2.14b) 

  u • e(u ⊥) = 0 , (2.2.14c) 

  u • h(u⊥) = 0  . (2.2.14d) 
 

Hence, only two of the six components of e(u⊥)  and h(u⊥ ) are independent and, 

consequently, Eqs. (2.2.13a) and (2.2.13b) can be rewritten as 
 

  E(ρ, z) =  e⊥(u⊥ ) –  ˆ z  
u⊥ • e⊥(u⊥)

uz

⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥  ∫ eiku⊥• ρ eikuzz  d2u⊥  , (2.2.15a) 
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  H(ρ,z) =  –
i
k

∇ × e⊥ (u⊥ ) –  ˆ z  
u⊥ • e⊥(u⊥)

uz

⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥  ∫ eiku⊥• ρ eikuz z d2u⊥  . 

   (2.2.15b) 
 

The vector e  is the component of e⊥(u⊥) (u⊥)  transverse to the z-direction, i.e., 

, which is related to the tangential electric field in the 

plane  by the Fourier transform 

e⊥(u⊥) = e(u⊥ ) − ˆ z • e(u⊥ )

z = 0+

 

  e⊥(u⊥) =  
k

2π
⎛ 
⎝ 

⎞ 
⎠ 

2
 ∫ E⊥( ′ ρ ,0+ ) e−iku⊥• ′ ρ d2 ′ ρ  , (2.2.16) 

 
  E⊥ = E − ˆ z • E  . 
 

From the Weyl expansion (2.1.18) of a spherical wave and Eq. (2.2.16), it can readily 

be verified that Eqs. (2.2.15a) and (2.2.15b) are equivalent to Eqs. (2.2.11a) and 

(2.2.11b).  It should be mentioned that the angular spectrum equivalent of Eqs. 

(2.2.12a) and (2.2.12b) is similar to Eqs. (2.2.15a) and (2.2.15b), except that it 

involves h⊥ ⊥ ⊥(u ) = h(u ) − ˆ z • h(u⊥)  instead of e⊥(u⊥) . 

 

2.2.3 Approximate Theories 

 Since the electromagnetic aperture diffraction problem is a mixed boundary 

value problem, it is difficult to determine either the electric field or the magnetic 

field, or any of their components, in the plane z = 0+  for all values of ρ.  Hence 

approximate theories, similar to those found in the scalar theory (see Section 2.1.5), 

are often employed. 

 One commonly used theory is obtained by approximating the tangential 

electric field at  by the values z = 0+
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    ̂ z × E(m)(ρ,0+ ) =  0 on S (2.2.17a) 

and 

    ̂ z × E(m)(ρ,0+ ) =  ˆ z × E(inc) (ρ,0) in A . (2.2.17b) 
 

Equations  (2.2.11a) and (2.2.12b) then yield the following formulas for the electric 

and magnetic fields in the half-space z ≥ 0: 1,42,47 
 

  

  

E(m)(ρ, z) =  
1

2π
∇ × ˆ z × E(inc)( ′ ρ ,0)[ ] G(ρ− ′ ρ ,z)

A
∫  d2 ′ ρ  , (2.2.18a) 

 

  

  

H(m)(ρ, z) =  –
i

2πk
∇ × ∇ × ˆ z × E(inc)( ′ ρ ,0)[ ] G(ρ− ′ ρ ,z)

A
∫  d2 ′ ρ  . 

   (2.2.18b) 
 

This theory is sometimes known as the m-theory because it involves an 

approximation to the magnetic Hertz vector.  We will adopt the same terminology.  

There is also an e-theory that contains the approximate boundary values 
 

    ̂ z × H(e)(ρ,0+ ) =  0 on S (2.2.19a) 

and 

    ̂ z × H(e)(ρ,0+ ) =  ˆ z × H(inc)(ρ,0) in A . (2.2.19b) 
 

With these boundary values for the tangential magnetic field in the plane , Eqs. 

(2.2.12a) and (2.2.12b) become1,42,47 

z = 0+

 

  

  

H(e)(ρ, z) =  
1

2π
∇ × ˆ z × H(inc) ( ′ ρ ,0)[ ] G(ρ − ′ ρ , z)

A
∫  d2 ′ ρ  , (2.2.20a) 
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E(e)(ρ,z ) =  
i

2πk
∇ × ∇ × ˆ z × H(inc)( ′ ρ ,0)[ ] G(ρ − ′ ρ , z)

A
∫  d2 ′ ρ  . (2.2.20b) 

 

The average of the above two theories yields yet another well-known approximate 

theory,1,31,42,47 
 

   E(K) (ρ,z) =  
1
2

 E(m)(ρ,z) +  E(e) (ρ,z)[ ] , (2.2.21a) 

 

   H(K )(ρ,z ) =  
1
2

 H(m) (ρ,z) +  H(e) (ρ,z)[ ] , (2.2.21b) 

 

which is sometimes called the Kirchhoff-Kottler theory and which is similar to the 

usual scalar Kirchhoff theory (2.1.37). 

 

2.2.4 Two-Dimensional Electromagnetic Diffraction 

 If the incident field is a function of only two coordinates, say x and z, and if 

the aperture is a function of only the x-coordinate, so it is a slit (or several parallel 

slits), the electromagnetic diffraction problem is two dimensional.1,48  Then, by 

decomposing the field into E and H-polarizations, 
 

  E(x,z) = E (EP x,z) + E (HP x,z)  , (2.2.22a) 
 
  H(x,z ) = HEP(x, z) + HHP(x,z)  , (2.2.22b) 
 

the problem may be treated by two independent scalar theories. 

 For the E-polarized contribution, the electric field is parallel to the y-axis and 

the magnetic field only has x and z-components, i.e., 
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  EEP(x, z) = ˆ y  Ey(x,z)  , (2.2.23a) 

 
  HEP(x, z) = ˆ x  Hx (x, z)  + ˆ z  Hz (x,z ) , (2.2.23b) 

 

ˆ x , ˆ y  and  being unit vectors in the x, y, and z-directions.  Furthermore, from 

Maxwell’s equations it follows that 

ˆ z 

Ey (x, z) satisfies the two-dimensional Helmholtz 

equation, 

 
  ∇2 +  k2( ) Ey (x,z ) =  0  , (2.2.24) 

 

∇2 ≡ ∂ 2 ∂ x2 +∂ 2 ∂ y2 , and that the components of the magnetic field can be 

computed from Ey (x, z) with the use of the formulas 

 

  Hx (x, z) =  
i
k

∂ Ey (x, z)
∂ z

 ,     Hz(x, z) =  –
i
k

∂ Ey (x, z)
∂ x

 . (2.2.25) 

 

For a perfectly conducting screen, the boundary conditions (2.2.4) and (2.2.7) in the 

plane z = 0 then reduce to 
 
    Ey (x, z) = 0 on S , (2.2.26a) 

 

  
  

∂ Ey (x, z)
∂ z

 
z=0

=  
∂ Ey

(inc) (x,z )
∂ z

 
z=0

in A . (2.2.26b) 

 

These boundary conditions are exactly the same as those for a Dirichlet-type screen 

in the scalar theory [see Eqs. (2.1.6) and (2.1.8)]. 

 For the H-polarized contribution, on the other hand, the magnetic field is 

parallel to the y-axis and the electric field only has x and z-components: 
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  HHP(x, z) = ˆ y  Hy(x,z)  (2.2.27a) 

 
  EHP(x, z) = ˆ x  Ex (x, z)  + ˆ z  Ez(x,z)  . (2.2.27b) 

 
In this case, Hy(x,z)  obeys the Helmholtz equation, 

 
  ∇2 +  k2( ) Hy(x,z) =  0 (2.2.28) 

 
and the formulas 
 

  Ex (x,z) =  –
i
k

∂ Hy (x, z)
∂ z

 ,     Ez(x,z) =  
i
k

∂ Hy (x, z)
∂ x

 (2.2.29) 

 

can be used to determine the components of the electric field from Hy(x,z) .  For a 

perfectly conducting screen, the boundary conditions (2.2.4) and (2.2.7) in the plane 

z = 0 now become identical to those for a Neumann-type screen in the scalar theory 

[see Eqs. (2.1.7) and (2.1.9)]: 

 

  
  

∂ Hy(x,z)
∂ z

 
z=0

=  0 on S , (2.2.30a) 

 
   . (2.2.30b)   Hy(x,0) =  Hy

(inc) (x,0) in A
 

 Therefore, two-dimensional electromagnetic diffraction can be analyzed by 

two independent scalar theories.  The scalar theory for E-polarization is based on the 

y-component of the electric field and boundary conditions appropriate to a Dirichlet-

type screen, whereas the one for H-polarization is based on the y-component of the 

magnetic field and boundary conditions appropriate to a Neumann-type screen. 
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CHAPTER 3 
 

CONTRIBUTIONS OF HOMOGENEOUS AND 

EVANESCENT WAVES IN THE NEAR-FIELD 

 

 

 In order to elucidate the effects of diffraction in the near-field, we shall now 

examine the separate contributions of homogeneous and inhomogeneous (more 

precisely evanescent) waves to two-dimensional (2-D) near-field diffraction patterns 

of scalar fields.  Some discussion of near-field diffraction based on such a 

decomposition can also be found in papers by Harvey1 and by Massey.2  The 

consequences of neglecting evanescent waves in certain near-field distributions have 

been discussed by Carter.3,4  For the sake of mathematical simplicity and also 

because, in the 2-D case, the exact electromagnetic diffraction problem can be 

described by a scalar theory (see Section 2.2.4), we restrict our analysis to 2-D 

diffraction. 

 First, in Section 3.1 we discuss some basic relations for calculating the 

homogeneous and the evanescent contributions to an arbitrary field.  We then 

introduce the concepts of total homogeneous intensity and total evanescent intensity 

in Section 3.2 as convenient measures of the relative importance of the two 

contributions.  In Section 3.3 we show how to convert certain integrals used in 

calculating the homogeneous and the evanescent contributions into expressions 

involving infinite series and in Section 3.4, from some of these expressions, we 

obtain approximate relations that are valid in the near field.  Finally, in Section 3.5 
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we examine the case of a plane wave diffracted by a slit in an opaque screen as an 

example.  
 
 

3.1  HOMOGENEOUS AND EVANESCENT CONTRIBUTIONS 
 

 We consider a 2-D monochromatic scalar optical field V(x,z, t) = U(x, z)e−iω t  

that obeys the 2-D Helmholtz equation 
 
  ∇2 +  k2( ) U(x,z) =  0  , (3.1.1) 

 

where ∇2 ≡ ∂ 2 ∂ x2 +∂ 2 ∂ z2  and k = ω c = 2π λ  is the free-space wave number.  

We are interested in free-space propagation of the field U(x,z) from the plane 

z = 0 into the half-space z > 0.  We therefore assume that all sources, scatterers, 

diffracting apertures, etc., are located in the half-space z ≤ 0.  Using the angular 

spectrum representation (see Section 2.1.3),5-10 we can express U(x, z ≥ 0)  as the 

sum of a homogeneous contribution Uh(x,z)  and an evanescent (inhomogeneous) 

one Ui (x,z), 

 

  U(x, z) = Uh(x,z) + Ui(x, z) . (3.1.2) 

 

Uh(x,z)  is a superposition of homogeneous plane waves that propagate into the half-

space z > 0, 
 

  Uh(x,z) =  a(ux ) eikuxx  eikz 1 – ux
2

 dux
ux  ≤ 1
∫  , (3.1.3a) 
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whereas Ui (x,z) is a superposition of evanescent (inhomogeneous) plane waves that 

decay exponentially along the positive z-direction, 
 

  Ui (x,z) =  a(ux ) eikux x e–kz ux
2 – 1 dux

ux  >  1
∫  . (3.1.3b) 

 

It should be noted that the homogeneous and the evanescent contributions each 

separately satisfy the Helmholtz equation. 

 As in the 3-D case (see Section 2.2.4), the angular spectrum amplitude a(ux ) 

is the Fourier transform of the field distribution U(x, 0) in the plane z = 0: 

 

  a(ux ) =  
k

2π
U( ′ x ,0) 

−∞

∞

∫ e– ikux ′ x  d ′ x  . (3.1.4) 

 

For the near-field geometries of interest here, we can restrict our analysis to well-

behaved functions U(x, 0) that are of finite support, i.e., well-behaved functions that 

vanish outside some finite x-range.  U(x, 0) is then square-integrable; furthermore, 

a(ux ) is the boundary value on the real ux -axis of an entire analytic function.11 

 With the use of relation (3.1.4), Eqs. (3.1.3a) and (3.1.3b) may be rewritten as 

the convolutions 

 

  

  

Uh(x,z) =  H h(x – ′ x ,z ) U( ′ x ,0) 
−∞

∞

∫ d ′ x  (3.1.5a) 

and 

  

  

Ui (x,z) =  H i (x – ′ x , z) U ( ′ x ,0) 
−∞

∞

∫ d ′ x  , (3.1.5b) 
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with the kernels    and H  given by the formulas H h (x,z )  i(x,z)

 

  

  

H h (x,z ) ≡  
k
π

cos(kux x) eikz 1 – ux
2

 dux
0

1

∫  (3.1.6a) 

and 

  

  

H i(x,z) ≡  
k
π

cos(kux x) e–kz ux
2  – 1 dux

1

∞

∫  . (3.1.6b) 

 
It can readily be shown that 
 

  

  

H (x,z) ≡  H h(x,z) +  H i (x, z) 

=  
ikz

2 x 2 +  z2
 H1

(1) k x2 +  z2⎛ 
⎝ 

⎞ 
⎠  ,

 (3.1.7) 

 

where  is a Hankel function of the first kind and first order.  Expression (3.1.7) is 

the usual 2-D free-space wave propagator.12 

H1
(1)

 If we let z = 0 in Eqs. (3.1.6a) and (3.1.6b), the integrations with respect to ux  

can be performed at once and yield 
 

  
 
H h (x,0) =  

1
π

sin(kx )
x

 (3.1.8a) 

and 

  
  
H i(x,0) =  δ(x) –  

1
π

sin(kx )
x

 , (3.1.8b) 

 

where δ(x) is the Dirac delta function.  After substituting these relations into Eqs. 

(3.1.5a) and (3.1.5b), we find that 
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  Uh(x,0) =  
1
π

sin k(x − ′ x )[ ]
(x − ′ x )

 U( ′ x ,0) d ′ x 
−∞

∞

∫  (3.1.9a) 

and 

  Ui (x,0) =  U (x,0) –  
1
π

sin k(x − ′ x )[ ]
(x − ′ x )

 U( ′ x ,0) d ′ x 
−∞

∞

∫  . (3.1.9b) 

 

Because the location of the plane z = 0 is essentially arbitrary, analogous expressions 

must also apply to any plane z = constant ≥ 0: 
 

  Uh(x,z) =  
1
π

sin k(x − ′ x )[ ]
(x − ′ x )

 U( ′ x ,z) d ′ x 
−∞

∞

∫  (3.1.10a) 

and 

  Ui (x,z) =  U(x, z) –  
1
π

sin k(x − ′ x )[ ]
(x − ′ x )

 U( ′ x ,z ) d ′ x 
−∞

∞

∫  . (3.1.10b) 

 

 We see from the preceding discussion that there are three alternative pairs of 

expressions that can be used to determine the homogeneous and the evanescent 

contributions to the field in any plane z = constant ≥ 0:  Eqs. (3.1.3a) and (3.1.3b); 

Eqs. (3.1.5a) and (3.1.5b); Eqs. (3.1.10a) and (3.1.10b).   The first pair, Eqs. (3.1.3a) 

and (3.1.3b), expresses Uh(x,z)  and Ui (x,z) in terms of the angular spectrum 

amplitude a(ux ), which itself can be computed by taking a Fourier transform of the 

field distribution U(x, 0) in the plane z = 0 [see Eq. (3.1.4)].  In the near field, these 

equations are well suited for numerical implementation because all the integrations 

can be performed with fast Fourier transforms. 

 The second pair of equations, Eqs. (3.1.5a) and (3.1.5b), determines Uh(x,z)  

and Ui (x,z) directly from the field distribution U(x, 0) in the plane z = 0.  However 



  48 
 

for arbitrary z, the kernels  and , given by Eqs. (3.1.6a) and 

(3.1.6b), cannot readily be expressed in closed form.  Nevertheless, as shown in 

Section 3.3, the integral expressions (3.1.6a) and (3.1.6b) can be converted into 

expressions that contain infinite series.  Furthermore, as shown in Section 3.4, using 

these expressions one can obtain approximate closed-form relations for both 

 and    that are valid in the near field where kz << 1. 

 H h (x,z )  H i(x,z)

  H h (x,z ) H i(x,z)

 Lastly, Eqs. (3.1.10a) and (3.1.10b) can be used to determine Uh(x,z)  and 

Ui (x,z) in any plane z = constant ≥ 0 from knowledge of the field distribution U(x, z) 

in that plane.  If U(x, z) is not known, but either Uh(x,z)  or Ui (x,z) is known, Eqs. 

(3.1.10a) and (3.1.10b) are then Fredholm integral equations of the first and second 

kind, respectively, for the unknown U(x, z).  The integral operator that appears in Eq. 

(3.1.10a) has been studied extensively and occurs in a variety of contexts.13-16 

 
 

3.2  TOTAL INTENSITIES 
 

 We shall now introduce the concepts of total (plane-integrated) homogeneous 

intensity and total (plane-integrated) evanescent intensity as rough convenient 

measures of the relative importance of the contributions Uh(x,z)  and Ui (x,z) to the 

field distribution U(x, z). 

 Using Eq. (3.1.2), we can write the intensity of the field I(x,z) ≡  U(x, z)2  in 

the form 
 

  I(x,z) = Ih(x, z) + Ii(x,z) + Ihi (x, z) , (3.2.1) 

where 

  Ih(x, z) ≡  Uh(x, z)2  (3.2.2a) 

and 
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  Ii (x, z) ≡  Ui (x,z) 2  (3.2.2b) 

 

are the intensities of the homogeneous and of the evanescent contributions, 

respectively, and the term 
 

  Ihi (x, z) ≡  Uh
∗(x,z)Ui (x,z) +  Uh (x,z )Ui

∗(x, z) (3.2.2c) 

 

arises from interference between the two contributions.  We now define the total 

intensity Itot (z ), the total homogeneous intensity Itot
(h)(z ) and the total evanescent 

(inhomogeneous) intensity Itot
(i) (z ) by the expressions  

 

  Itot (z) ≡ I(x,z) dx
–∞

 ∞

∫  , (3.2.3) 

 

  Itot
(h)(z ) ≡  Ih(x, z) dx

–∞

 ∞

∫  (3.2.4a) 

and 

  Itot
(i) (z ) ≡  Ii(x, z) dx

–∞

 ∞

∫  , (3.2.4b) 

 
respectively. 

 From Eqs. (3.1.3a), (3.1.3b) and (3.2.1)-(3.2.4b), it follows that the total 

intensity is just the sum 
 

  Itot (z ) =  Itot
(h)(z ) +  Itot

(i) (z)  , (3.2.5) 

where 
  Itot

(h )(z ) =  
2π
k

a(ux )2  dux
ux  ≤  1
∫  (3.2.6a) 
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and 

  Itot
(i) (z) =  

2π
k

a(ux ) 2 e–2kz ux
2 – 1 dux

ux  >  1
∫  . (3.2.6b) 

 

There are only two terms in Eq. (3.2.5) because the integrated interference term can 

be shown to be identically zero.  Furthermore, as is evident from Eq. (3.2.6a), the 

total homogeneous intensity is conserved on propagation in the sense that Itot
(h )(z ) is 

independent of z.  Hence we may drop the z-argument in Itot
(h )(z ) and we will do so 

from now on.  The conservation of total homogeneous intensity on propagation and 

related conservation laws are discussed in Refs. 17-20. 

 By substituting the angular spectrum amplitude from Eq. (3.1.4) into Eqs. 

(3.2.6a) and (3.2.6b), we can rewrite the total intensities Itot
(h )  and Itot

(i) (z ) in terms of 

the field distribution U(x, 0) in the plane z = 0 as 
 

  Itot
(h ) =  

1
π

d ′ x 
–∞

∞

∫ d ′ ′ x  
sin k( ′ x − ′ ′ x )[ ]

( ′ x − ′ ′ x )
 U∗( ′ x ,0) U ( ′ ′ x ,0)

−∞

∞

∫  (3.2.7a) 

and 

  

  

Itot
(i) (z ) =  d ′ x 

–∞

∞

∫ d ′ ′ x  H i ( ′ x − ′ ′ x ,2z) U∗( ′ x , 0) U ( ′ ′ x ,0)
−∞

∞

∫  , (3.2.7b) 

 

where the kernel    is given by Eq. (3.1.6b).  Alternatively, using the fact that H i(x,z)

Itot
(h )  is independent of z, we can also express Itot

(h )  and Itot
(i) (z ) in terms of the field 

distribution U(x, z) in an arbitrary plane z = constant ≥ 0 as follows: 
 

  Itot
(h ) =  

1
π

d ′ x 
–∞

∞

∫ d ′ ′ x  
sin k( ′ x − ′ ′ x )[ ]

( ′ x − ′ ′ x )
 U∗( ′ x , z) U ( ′ ′ x ,z)

−∞

∞

∫  (3.2.8a) 

and 



  51 
 

Itot
(i) (z) =  U (x, z)2  dx

–∞

  ∞

∫  –  
1
π

d ′ x 
–∞

∞

∫ d ′ ′ x  
sin k( ′ x − ′ ′ x )[ ]

( ′ x − ′ ′ x )
 U∗( ′ x , z) U ( ′ ′ x ,z)

−∞

∞

∫  .

  (3.2.8b) 
 

 Evidently the total intensities Itot (z ), Itot
(h )  and Itot

(i) (z ) are useful only if they 

are finite quantities.  In this connection, it should be pointed out that there are 

physically realistic field distributions that have infinite total intensity but finite total 

energy flux.21  Since the field distribution U(x, 0) that we are considering is square-

integrable [see remarks below Eq.  (3.1.4)], Itot (0) is finite and, consequently, so are 

Itot (z ), Itot
(h )  and Itot

(i) (z ) because, as can easily be shown, Itot (z ) ≤  I tot(0) , 

Itot
(h ) <  Itot (0) and Itot

(i) (z) <  Itot (0). 

 Instead of using the total intensities Itot
(h )  and Itot

(i) (z ) as measures of the 

relative importance of Uh(x,z)  and Ui (x,z), one might consider using the total 

energy flux Ftot  and the total reactive energy Wtot (z ) for this purpose.  The total 

energy flux was already discussed in Section 2.1.6 for the 3-D case.  The total 

reactive energy can be introduced in a similar manner from the complex time-

averaged energy flux vector . ˜ F 

 For a 2-D scalar field,  can be defined by the expression ˜ F (x, z)

 

  ˜ F (x, z) ≡  2iωα U(x,z)∇U∗(x,z)  , (3.2.9) 

 

where α is a real, positive constant and ∇ = ˆ x ∂ ∂ x + ˆ z ∂ ∂ z .  Because the real part of 

 is just the real energy flux vector F  which we encountered in Sections 2.1.6 and 

2.1.7, the total energy flux 

˜ F 

Ftot  across any plane z = constant ≥ 0 may evidently be 

expressed as 
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  Ftot  =  Re{˜ F (x,z) • ˆ z } dx
–∞

 ∞

∫  . (3.2.10a) 

 

Here, since Ftot  is independent of the propagation distance z,  we have omitted its z-

argument.  The total reactive energy Wtot (z ) across any plane z = constant ≥ 0 may be 

introduced by the analogous expression*  

 

  Wtot (z ) =  Im{˜ F (x,z) • ˆ z } dx
–∞

 ∞

∫  . (3.2.10b) 

 

 If we use Eqs. (3.1.2)-(3.1.3b) and (3.2.9)-(3.2.10b), we readily find that the 

total energy flux and the total reactive energy may be written in terms of the angular 

spectrum amplitude a(ux ) as 

 
  Ftot  =  4πωα 1 –  ux

2  a(ux ) 2  dux
ux  ≤  1
∫  (3.2.11a) 

and 

  Wtot (z ) =  4πωα ux
2 –  1 a(ux )2  e–2kz ux

2  – 1 dux
ux  >  1
∫  . (3.2.11b) 

 

These equations should be compared with their counterparts for the total intensities, 

Eqs. (3.2.6a) and (3.2.6b).  It is evident that the total energy flux Ftot  depends only 

on the homogeneous contribution, whereas the total reactive energy Wtot (z ) depends 

only on the evanescent one.  Because of the mutiplicative factor ux
2 –  1  in Eq. 

(3.2.11b), the total reactive energy can diverge in cases when the total evanescent 

                                                                                                                                           
* The electromagnetic analog of this quantity is discussed in Ref. 22. 
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intensity Itot
(i) (z ) is finite.  In fact, for the example considered in Section 3.5, one can 

show that the total reactive energy does indeed diverge in the plane z = 0.  For this 

reason, we chose to use the total intensities Itot
(h)  and Itot

(i) (z ) rather than Ftot  and 

Wtot (z ) in our near-field analysis. 

 
 

3.3  THE KERNELS H  AND H    

 

 

h (x,z ) i(x,z)
 

 As was already mentioned in Section 3.1, the kernels  and    

that appear in Eqs. (3.1.5a) and (3.1.5b), and in Eq. (3.2.7b),  and that are defined by 

Eqs. (3.1.6a) and (3.1.6b) cannot be expressed in a closed form.  For analytical and 

numerical work, it is desirable to obtain alternate forms for H  and    

that do not contain integrals.  In Sections 3.3.1 and 3.3.2, we show how to convert 

Eqs. (3.1.6a) and (3.1.6b) into two different kinds of expressions that contain infinite 

series of Bessel functions rather than integrals.  It should be pointed out that the 

approach used in Section 3.3.2 is somewhat similar to that used in Ref. 7 for the 3-D 

case, but the final results are considerably different. 

 H h (x,z ) H i(x,z)

h (x,z ) H i(x,z)

 

3.3.1 Expressions for    and H  involving Series of Bessel 

 Functions of Integer Order 

H h (x,z ) i(x,z)

 Let us make the change of variables ux = cosψ  in Eq. (3.1.6a).  The kernel 

 may then be written in the form   H h (x,z )

 

  
  
H h (x,z ) =  

1
2π i

 
∂ T(x,z)

∂ z
 , (3.3.1) 

 
where the function T (x, z) is given by the expression 
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  T (x, z) =  eikx cosψ  eikz sinψ  dψ
0

π

∫  . (3.3.2) 

 

As shown in Appendix B, by expanding the two exponentials in the integrand in 

terms of Bessel functions, one can express T (x, z) in the form 
 

 

T (x, z) =  π J0 k x2 +  z2⎛ 
⎝ 

⎞ 
⎠  +  πi J0(kx) H0(kz)

+  8i  (−1)n 2m +1
(2m +1)2 − 4n2  J2n (kx) J2m+1(kz)

n=1

∞

∑
m=0

∞

∑  ,
 

   (3.3.3) 
 

where Jm is a Bessel function of the first kind and mth order and H  is a Struve 

function of mth order. 

m

 If we now substitute from Eq. (3.3.3) into Eq. (3.3.1) and make use of the 

relations23 
 

   
∂ J0(β)

∂ β
 =  − J1(β ) , (3.3.4) 

 

   
∂ Jν (β)

∂ β
 =  Jν −1(β) −  

ν
z

Jν (β ) , (3.3.5) 

and 

  )(    
 

)( 
1

0
 β

β∂
β∂

−= HH
 , (3.3.6) 

 
we obtain the desired formula for the kernel :  H h (x,z )
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H h (x,z ) =  
ikz

2 x2 +  z2
 J1 k x2 +  z2⎛ 

⎝ 
⎞ 
⎠  +  

k
2

J0(kx) H−1(kz)

+  
4k
π

 (−1)n 2m +1
(2m +1)2 − 4n2  J2n(kx)

n=1

∞

∑
m=0

∞

∑

×  J2m(kz) −  
2m +1

kz
J2m+1(kz)⎡ 

⎣ 
⎤ 
⎦ 
 .

 

   (3.3.7a) 
 

In addition, since the kernel    is related to H  by Eq. (3.1.7), we have H i(x,z)  h (x,z )

 

  

  

H i(x,z) =  −
kz

2 x2 +  z2
 Y1 k x2 +  z2⎛ 

⎝ 
⎞ 
⎠  −  

k
2

J0 (kx)  H−1(kz)

−  
4k
π

 (−1)n 2m +1
(2m +1)2 − 4n2  J2n(kx)

n=1

∞

∑
m=0

∞

∑

×  J2m(kz) −  
2m +1

kz
J2m+1(kz)⎡ 

⎣ 
⎤ 
⎦ 
 ,

 

   (3.3.7b) 
 

where Y1

  

 is a Bessel Function of the second kind and first order. 
 In order to verify that these expressions for H  and H  do reduce 

to Eqs. (3.1.8a) and (3.1.8b), we set z = 0 in Eq. (3.3.7a) and make use of the limiting 

forms [see Ref. 23, pg. 360, Eq. (9.1.7) and pg. 496, Fig. 12.2] 

h (x,z ) i(x,z)

 

   Jν (β) ≈  
β 2( )ν

Γ(ν +1)
 , as  β → 0 , (3.3.8) 

 

  H−1(β ) ≈  
2
π

 , as  β → 0 . (3.3.9) 

 
Equation (3.3.7a) then becomes 
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H h (x,0) =   

k
π

J0(kx) −  
2k
π

 
(−1)n

4n2 −1
n=1

∞

∑  J2n(kx)  . (3.3.10) 

 

If we compare this equation with Eq. (3.1.8a), we see that the following identity must 

hold for the two to be equivalent: 
 

  
sin β

β
 =   J0 (β ) −  2  

(−1)n

4n2 −1
n=1

∞

∑  J2n (β ) . (3.3.11) 

 

This identity does not appear in any of the standard references on Bessel functions.  

However, we were able to check its validity numerically; thus confirming that Eq. 

(3.3.7a) for the kernel    does yield the correct limiting form, Eq. (3.1.8a), in 

the plane z = 0.  Since the kernels  and  are related by    

H h (x,z )

 H h (x,0)  H i(x,0) H h (x,0)

  + H i (x,0) = δ (x) , Eq. (3.3.7b) evidently also reduces to the correct form, Eq. 

(3.1.8b). 

 

3.3.2 Expressions for    and H  involving Series of Spherical 

 Bessel Functions  

H h (x,z )  i(x,z)

 We now write the kernel  in the form [see Eq. (3.1.6a)]  H h (x,z )

 

  

  

H h (x,z ) =  
k

2π
eikuxx  eikz 1 −  ux

2
 dux

−1

1

∫  (3.3.12) 

 
and use the series expansion 
 

  eikz 1 − ux
2

 =   
in

n!
n=0

∞

∑  (kz)n
 (1− ux

2)n 2 . (3.3.13) 
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As shown in Appendix C, after substituting from Eq. (3.3.13) into Eq. (3.3.12) and 

performing the integration with respect to ux , one may express H  as  h (x,z )

 

 
  
H h (x,z ) =  

ikz

2 x2 +  z2
 J1 k x2 +  z2⎛ 

⎝ 
⎞ 
⎠  +  

k
π

 (−1)m
 
2m

 m!
(2m)!

 (kz)m jm (kx)
(kx)m

m=0

∞

∑  . 

   (3.3.14a) 
 

Furthermore, according to Eq. (3.1.7), the similar expression for the kernel    

is 

H i(x,z)

 

 
  
H i(x,z) = −

kz

2 x2 +  z2
 Y1 k x2 +  z2⎛ 

⎝ 
⎞ 
⎠  −  

k
π

 (−1)m
 
2m

 m!
(2m)!

 (kz)m jm (kx)
(kx)m

m=0

∞

∑  . 

   (3.3.14b) 
 

It is apparent that in the plane z = 0 these equations for  and    yield 

the correct limiting forms, Eqs. (3.1.8a) and (3.1.8b), because for z = 0 the only non-

zero term in the summations is the m

 H h (x,z ) H i(x,z)

= 0 term. 

 
 

3.4  APPROXIMATE RELATIONS FOR THE NEAR FIELD 
 

 So far our discussion has been general in the sense that our formulas apply to 

any propagation distance z.  Using the expansions developed in Section 3.3.2 for the 

kernels  and   , Eqs. (3.3.14a) and (3.3.14b), we will now derive 

approximate relations for the homogeneous and the evanescent contributions that are 

valid for propagation distances much smaller than the wavelength, 0 .  For 

such distances, we would expect changes in the field U

  H h (x,z ) H i(x,z)

≤ kz << 1

(x, z) from its initial value 
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U(x, 0) to be dominated by the decay of the evanescent contribution Ui (x,z), with 

only slight modifications of the homogeneous contribution Uh(x,z) . 

 When 0 ≤ kz << , we can approximate Eq. (3.3.14a) for the kernel    

by setting 

1 H h (x,z )

x2 +  z2 ≈ x  and retaining only the first two terms in the sum over m: 
 

  
  
H h (x,z ) ≈  

k
π

sin(kx)
kx

 +   kz 
ik
2

J1 kx( )
kx

 −  
k
π

j1(kx)
kx

⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥  . (3.4.1a) 

 

For the kernel   , because there is a singularity at H i(x,z) x = z = 0  contained in the Y1 

term of Eq.  (3.3.14b), we do not make any approximations to that term.  However, 

because the Y1 term also dominates the z-behavior of  in the range 

, we only need to keep the first term in the sum over m.  We then obtain 

the approximate formula 

 H i(x,z)

0 ≤ kz << 1

 
 

  
H i(x,z) ≈ −

kz

2 x2 +  z2
 Y1 k x2 +  z2⎛ 

⎝ 
⎞ 
⎠  −  

k
π

sin(kx)
kx

 . (3.4.1b) 

 

It can readily be shown that Eqs. (3.4.1a) and (3.4.1b) reduce to the exact expressions 

(3.1.8a) and (3.1.8b) in the plane z = 0. 

 By substituting from Eqs. (3.4.1a) and (3.4.1b) into Eqs. (3.1.5a) and (3.1.5b), 

respectively, and making use of Eq. (3.1.9a), we find that, for , the 

homogeneous and the evanescent contributions can be approximated by the formulas 

0 ≤ kz << 1

 

 Uh(x,z) ≈  Uh(x,0) +  kz
ik
2

J1 k(x − ′ x )[ ]
k(x − ′ x )

 −  
k
π

j1 k(x − ′ x )[ ]
k(x − ′ x )

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

 U ( ′ x ,0) 
−∞

∞

∫ d ′ x  , 

   (3.4.2a) 
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 Ui (x,z) ≈ −
kz
2

1

(x − ′ x )2 +  z2
 Y1 k (x − ′ x )2 +  z2⎛ 

⎝ 
⎞ 
⎠  U ( ′ x ,0) 

−∞

 ∞

∫ d ′ x  −  Uh(x, 0) . 

   (3.4.2b) 
 

From the form of these two equations, we see that for propagation distances much 

smaller than a wavelength the homogeneous contribution is modified from its value 

in the plane z = 0 by the addition of a small term that is linear in kz, whereas the 

evanescent contribution changes rapidly from its z = 0 value.  These effects are 

evident in the example considered in the next section. 
 
 

3.5  DIFFRACTION BY A SLIT 
 

 We now consider, as an example, the near-field diffraction of a plane wave 

incident normally on a slit of width d in an planar opaque screen (see Fig. 3-1), using 

approximate boundary conditions.  We assume that directly behind the slit, in the 

plane , the field may be approximated by the boundary conditions of the 

Rayleigh-Sommerfeld theory of the first kind, which are given by Eqs. (2.1.31a) and 

(2.1.31b): 

z = 0+

 

  U(x, 0+ ) =   
U(inc)(x,0) ,      for   –

d
2

 ≤  x ≤  
d
2

 ,

0 ,      otherwise .

⎧ 

⎨ 
⎪ 

⎩ ⎪ 
 (3.5.1) 

 

For the case of a normally incident plane wave, U , where K is a 

constant.  It should be pointed out that, for the small slit widths of interest here, one 

would expect the actual field distribution in the plane 

(inc) (x,0) = K

z = 0+ , i.e., the solution to the  
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x = d 2

x = – d 2
z

z = 0  
 
Figure 3-1  A slit of width d in an opaque screen, illuminated by a normally incident 
plane wave. 

 

 

rigorous boundary value problem, to be rather different from the field distribution 

given by the above boundary conditions.  (A comparison of exact and approximate 

boundary conditions will be given in Chapter 4.)   Nevertheless, some understanding 

of propagation in the near field can still be gained by employing these approximate 

boundary conditions. 

 Using Eq. (3.1.4), we find that the angular spectrum amplitude associated with 

boundary conditions  (3.5.1) is 
 

  a(ux ) =  
K
π

sin uxkd 2( )
ux

 . (3.5.2) 

 

Consequently, according to Eqs.  (3.1.3a) and (3.1.3b), the homogeneous and the 

evanescent contributions behind the screen (z ≥ 0) are 
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  Uh(x,z) =  
K
π

sin ux kd 2( )
ux

 eikux x eikz 1 – ux
2

 dux
ux  ≤  1
∫  (3.5.3a) 

and 

  Ui (x,z) =  
K
π

sin uxkd 2( )
ux

 eikuxx  e–kz ux
2 – 1 dux

ux  >  1
∫  . (3.5.3b) 

 
The corresponding total intensities are [see Eqs. (3.2.6a) and (3.2.6b)] 
 

  Itot
(h ) =  

4Itot (0)
πkd

  

sin2 ux kd 2( )
ux

2
0

1

∫  dux  (3.5.4a) 

and 

  Itot
(i) (z ) =  

4Itot (0)
πkd

  

sin2 ux kd 2( )
ux

2  e–2kz ux
2 – 1

1

∞

∫  dux  , (3.5.4b) 

 

where Itot (0) =  K 2d  is the total intensity in the plane z = 0.  Equation (3.5.4a) for 

the total homogeneous intensity can be rewritten in a more compact form as 
 
  Itot

(h ) =  Itot (0) 2
π  Si(kd) –  4

πkd  sin2 kd 2( )[ ] , (3.5.5) 

 
where Si(β) is the sine integral 
 

  Si(β) ≡   

sint
t

0

β

∫  dt  . (3.5.6) 

 

Furthermore, in the plane z = 0, expressions (3.5.3a) and (3.5.3b) for the 

homogeneous and the evanescent contributions reduce to 
 

  Uh(x,0) =  
K
π

 Si k(x + d 2)[ ] –  Si k(x – d 2)[ ]{ } , (3.5.7a) 



  62 
 

 

Ui (x,0) =   

K
π

 π –  Si k(x + d 2)[ ] +  Si k(x – d 2)[ ]{ } ,      for   –
d
2

 ≤  x ≤  
d
2

 ,

– 
K
π

 Si k(x + d 2)[ ] –  Si k(x – d 2)[ ]{ } ,      otherwise ,

⎧ 

⎨ 
⎪ 

⎩ ⎪ 
 

   (3.5.7b) 
 
and expression (4.4b) for the total evanescent intensity reduces to 
 
  Itot

(i) (0) =  I tot(0) 1 –  2
π  Si(kd ) +  4

πkd  sin2 kd 2( )[ ] . (3.5.8) 

 

 We can now examine the field U(x, z), the homogeneous contribution 

Uh(x,z) , the evanescent contribution Ui (x,z), the total intensity Itot (z ), the total 

homogenous intensity Itot
(h )  and the total evanescent intensity Itot

(i) (z ) in the near field 

for specific values of the slit width d and of the propagation distance z. 

 Figures 3-2 through 3-4 depict U(x,z) , Uh(x, z)  and Ui (x,z) for z = 0, z = 

0.02λ, z = 0.1λ and z = 0.5λ.  These figures were computed from Eqs. (3.5.3a) and 

(3.5.3b) with the use of Fast Fourier Transforms.  Figure 3-2, 3-3 and 3-4 pertain to 

slits of width d = 0.2λ,  d = 1λ and d = 5λ, respectively.  As expected, we see that for 

z << λ changes in the field U(x, z) from its initial value U(x, 0) are due mostly the 

decay of the evanescent contribution Ui (x,z).  This decay of Ui (x,z) is obviously 

most important for the case d = 0.2λ and, consequently, for this slit width there is a 

substantial broadening and decrease in the amplitude of the field distribution U(x, z) 

on propagation from the plane z = 0 to z = 0.5λ. 

 Figures 3-5 through 3-7 show Itot
(h )   and Itot

(i) (0) as functions of the slit width d 

and Itot (z ) and Itot
(i) (z ) as functions of the propagation distance z.  From Fig. 3-5, we 

see that for slit widths smaller than about half a wavelength the total evanescent 

intensity Itot
(i) (0) in the plane z = 0 becomes quite appreciable compared with the total 
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homogeneous intensity Itot
(h ) .  However, as is evident from Fig. 3-7, Itot

(i) (z ) decreases 

very rapidly with z in all cases, although this decay is much more rapid for the cases 

d = 1λ and d = 5λ than for d = 0.2λ, d = 0.5λ and d = 2.5λ. 

 In order to understand the decay of the total evanescent intensity Itot
(i) (z ) with 

z, we can perform an asympotic expansion of Eq. (3.5.4b) for large kz.  The first three 

terms in the asympotic series for Itot
(i) (z ) are then  

 

 

Itot
(i) (z ) ~  4Itot (0)

πkd
 

1!
(2kz)2

⎧ 
⎨ 
⎩ 

sin2 kd 2( ) +  3!
(2kz)4  

kd
4

 sin(kd) −  3
2

 sin2(kd 2)⎡ 
⎣ 

⎤ 
⎦ 

+  
5!

(2kz)6  
kd
4

⎛ 
⎝ 

⎞ 
⎠ 

2
cos(kd) −  

3kd
8

 sin(kd) +  
15
8

 sin2(kd 2)
⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 
⎫ 
⎬ 
⎭ 

 ,

 

  (3.5.9) 
 

as we demonstrate in Appendix D.  Thus when the slit width d is an integer number 

of wavelengths, i.e., when kd = 2mπ  (m being an integer), the first two terms in the 

asymptotic series, which decay as (kz)−2 and (kz)−4, vanish and the term 

 

  
4Itot (0)

πkd
 

5!
(2kz)6  

kd
4

⎛ 
⎝ 

⎞ 
⎠ 

2
 , 

 

which decays as ( , dominates the asymptotic character of the total evanescent 

intensity.  This type of behavior is clearly seen in Fig. 3-7. 

kz)−6
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Figure 3-5  Total homogeneous intensity Itot
(h )  (which is independent of z) and total 

evanescent intensity Itot
(i) (0) in the plane z = 0 as functions of the slit width d.  These 

curves were computed from Eqs. (3.5.5) and (3.5.8). 

 

  

Figure 3-6  Total intensity Itot (z ) = Itot
(h) + Itot

(i)(z) computed from Eqs. (3.5.4b) and 

(3.5.5) as a function of the distance z for various slit widths. 
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Figure 3-7  Total evanescent intensity Itot

(i) (z ) computed from Eq. (3.5.4b) as a 

function of the distance z for various slit widths. 

 

 

3.6  CONCLUDING REMARKS 
 

 It is clear from our analysis of the homogeneous and the evanescent 

contributions, and especially from the example presented in Section 3.5, that changes 

in the field for propagation distances smaller than the wavelength are dominated by 

the decay of the evanescent contribution.  Although we have considered only two-

dimensional scalar fields in this Chapter, most of the analysis can be extended to 

three-dimensional scalar fields and to vector fields. 
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CHAPTER 4 
 

NEAR-FIELD DIFFRACTION OF  

ELECTROMAGNETIC WAVES BY A SLIT 

 

 

 So far we have not imposed rigorous boundary value conditions; in the 

example presented in Section 3.5, we simply used the approximate boundary 

conditions of the Rayleigh-Sommerfeld theory of the first kind.  In order to obtain a 

better understanding of the structure of the near-field and to develop more accurate 

approximate theories for describing near-field diffraction, we now reexamine a 

problem that has been studied extensively in the literature and that requires the 

determination of precise boundary values: the diffraction of a plane wave by a slit in 

a perfectly conducting plane.1-3  Rather than summing the exact series solution, 

which is not an efficient procedure for obtaining the field at many points in space, we 

use the method of finite differences in the time domain to numerically determine the 

near field.  We present numerical results for the field in the vicinity of the slit in 

Section 4.1 and compare these results with the predictions of the Rayleigh-

Sommerfeld theories in Section 4.2. 

 

4.1  NUMERICAL RESULTS 
 

 We choose a coordinate system in which the conducting screen lies in the 

plane z = 0 and the slit (of width d) is parallel to and centered about the y-axis (see  
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z
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x
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x = d/2

x = – d/2

 
 

Figure 4-1  Slit geometry. 
 
 

Fig. 4-1).  We assume that the incident field, which illuminates the slit from the half-

space z < 0, is monochromatic and two-dimensional, being a function of only the x 

and z-coordinates.  By decomposing the incident field into E-polarized and H-

polarized contributions, this diffraction problem may be analyzed by two independent 

scalar theories (see Section 2.2.4).  For the E-polarized contribution, the electric field 

EEP(x, z) = ˆ y  Ey (x, z) is parallel to the slit, whereas, for the H-polarized one, the 

magnetic field HHP(x, z) = ˆ y  Hy (x, z) is parallel to it. 

 To determine the near field accurately, without having to sum a slowly 

converging series or resorting to approximate theories, we used the finite-difference 

time-domain (FD-TD) method described in Appendix E.  In this approach, both 

polarizations are treated by applying finite differences to the free-space wave 

equation.  The difference between the two polarizations is in the boundary conditions 

that are applied on the surface of the perfect conductor. 
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 We first examined the diffraction of a plane wave by a perfectly conducting 

half-plane in order to verify that our FD-TD program was working properly.  We 

present some of those results here because it is instructive to contrast half-plane 

diffraction with slit diffraction.  Figure 4-2 is a color image of the amplitude and the 

phase of the total electric field Ey (x, z) in the vicinity of the half-plane when the 

illuminating field is an E-polarized, normally incident, unit amplitude, plane wave.  

Figure 4-3 is the corresponding image for H-polarized illumination and shows the 

amplitude and the phase of the total magnetic field Hy(x,z) .  To facilitate a 

comparison between the FD-TD results and the exact analytical solution depicted in 

Fig. 11.12 of Ref. 4, the amplitude of the magnetic field is shown again as a contour 

plot in Fig. 4-4.  (Note that the orientations of Figs. 4-3 and 4-4 are different.)  Some 

of the numerical errors due to the discretization of the FD-TD method are evident in 

these contours, especially in those of unit amplitude.  However, by comparing Fig. 4-

4 with the exact solution, we see that this error is small (< 2%).  In fact, it is not 

visible in the color images.   

 The numerical results for slit diffraction are shown in Figs. 4-5 through 4-17.  

By varying the parameters used in the calculations (see Appendix E), we were able to 

estimate that the error in the amplitude is less than 4 % . 

 If we examine the field distribution in the half-space z < 0, we can readily 

identify the remnants of the standing wave pattern one would expect to see in front of 

a perfectly conducting plane.  Clearly, with increasing slit size, there is less similarity 

between the field distribution in the half-space z < 0 and such a standing wave 

pattern.  Several edge dislocations,5,6 where the amplitude is zero and the phase is 

therefore not defined, are also visible in this region.  We have labeled these singular 

points only in Fig. 4-8, but they are present in all of the color images.  It should be 
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pointed out that near dislocations* the Poynting vector exhibits some rather unusual 

behavior.7,8 

 Next, if we consider the plane z = 0+  immediately behind the slit, we see that 

for E-polarization (see Figs. 4-13 and 4-14) the electric field  has at least 

one maximum in the slit and drops to zero at the edge of the slit.  Furthermore, the 

number of maxima increases in a predictable manner as the width of the slit increases.   

For H-polarization (see Figs. 4-15 and 4-16), the magnetic field  is very 

nearly a constant in the slit and decreases on the surface of the perfect conductor with 

increasing 

Ey (x,0+ )

Hy(x,0+ )

x .  The barely visible oscillations of Hy(x,0+ ) in the slit can be 

attributed to numerical errors, because the magnetic field in the slit must be equal to 

the incident magnetic field (see Section 2.2.1).  Although  does not have 

zero value in the shadow region, i.e., for 

Hy(x,0+ )

x > d 2, there is obviously no energy flow 

through the perfect conductor since the tangential electric field is identically zero on 

the surface. 

 In the plane , the E-polarized field z = 0+ Ey (x,0+ ) is obviously very 

different from the H-polarized field Hy(x,0+ ).  However, after propagating a 

distance of just a few wavelengths along the z-direction, Ey (x, z) and Hy(x,z)  

become similar to each other, as is evident from Fig. 4-17.  This phenomenon may be 

explained by examining the spatial Fourier transforms of  and Ey (x,0+ ) Hy(x,0+ ).  

One would then notice that the main differences between  and Ey (x,0+ ) Hy(x,0+ ) 

are in the higher spatial frequencies†.  Since, in the angular spectrum representation 

(see Section 2.1.3), these higher spatial frequencies give rise either to homogeneous 

                                                                                                                                           
* We examine another type of dislocation, the vortex or screw dislocation, in Chapter 6. 
† This type of analysis is used in Ref. 9 to show that the main differences between the Rayleigh-
Sommerfeld theory of the first kind, the Rayleigh-Sommerfeld theory of the second kind and the 
Kirchhoff theory are also due to high spatial frequencies 
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plane wave that propagate at a large angle with respect to the z-axis or to evanescent 

plane waves that propagate along the x-axis and decay exponentially along the z-axis, 

Ey (x, z) and Hy(x,z)  become more similar to each other with increasing z, for fixed 

x. 

 It is interesting to locate, in the color images, the points where the amplitude 

has a non-zero extremum and to examine the behavior of the phase in the vicinity of 

these points.  As expected from the two theorems of Section 2.1.7, the surfaces of 

constant phase are relatively "flat" there.  Furthermore, near maxima of the amplitude 

these surfaces are spaced further apart than the corresponding surfaces for a plane 

wave, whereas near minima they are spaced closer together than those for a plane 

wave.  This behavior of the phase is particularly noticeable along the z-axis.  As an 

example, in Fig. 4-8 we have labeled all the points where the amplitude has an 

extremum (× = maximum, ○ = non-zero minimum, ● = zero). 

 

 

4.2  COMPARISON OF NUMERICAL RESULTS  WITH  

PREDICTIONS OF APPROXIMATE THEORIES 
 

 We can now compare the FD-TD numerical results for the slit with the 

predictions of the Rayleigh-Sommerfeld theories of the first and second kinds (see 

Section 2.1.5).  We will restrict this comparison to the plane z  immediately 

behind the slit because that is where we would expect the greatest differences 

between the numerical results and the approximate theories. 

= 0+

 

  text continued after Fig. 4-17 
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Figure 4-13  Field distribution in the plane z = 0+  for slits of width d = 0.2λ, d = 
0.5λ and d = 1λ.  Comparison of numerical results (solid lines) for an E-polarized 
plane wave, showing the amplitude and phase of the electric field , with the 
predictions of the Rayleigh-Sommerfeld theories of the first (RS I: dashed lines) and 
second (RS II: dotted lines) kinds. 
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Figure 4-14  Field distribution in the plane z = 0+

 for slits of width d = 1.5λ, d = 2λ 
and d = 5λ.  Comparison of numerical results (solid lines) for an E-polarized plane 
wave, showing the amplitude and phase of the electric field , with the 
predictions of the Rayleigh-Sommerfeld theories of the first (RS I: dashed lines) and 
second (RS II: dotted lines) kinds. 
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Figure 4-15  Field distribution in the plane z = 0+  for slits of width d = 0.2λ, d = 
0.5λ and d = 1λ.  Comparison of numerical results (solid lines) for an H-polarized 
plane wave, showing the amplitude and phase of the magnetic field , with 
the predictions of the Rayleigh-Sommerfeld theories of the first (RS I: dashed lines) 
and second (RS II: dotted lines) kinds. 
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Figure 4-16  Field distribution in the plane z = 0+  for slits of width d = 1.5λ, d = 2λ 
and d = 5λ.  Comparison of numerical results (solid lines) for an H-polarized plane 
wave, showing the amplitude and phase of the magnetic field , with the 
predictions of the Rayleigh-Sommerfeld theories of the first (RS I: dashed lines) and 
second (RS II: dotted lines) kinds. 
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Figure 4-17  Comparison of numerical results for E and H-polarizations in a plane z 
= constant > 0 behind the slit for various slit widths d.  The amplitude of the electric 
field Ey (x, z) is shown for E-polarization and that of the magnetic field  for 
H-polarization. 
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4.2.1 Predictions of Approximate Theories 

 We need to determine the field distribution in the plane z = 0  predicted by 

the approximate theories when the illuminating field is a unit amplitude, normally 

incident, plane wave, i.e., when 

+

 
  U(inc) (x,z ) = eikz . (4.2.1) 
 

 For the Rayleigh-Sommerfeld theory of the first kind, the boundary value 

U(I )(x,0+ ) of the field is equal to the incident field in the illuminated region and is 

zero in the shadow region.  Therefore,  

 

  U(I )(x,0+ ) =  0 for  x  >  
d
2

 , (4.2.2a) 

 

  U(I )(x,0+ ) =  1 for  x  ≤  
d
2

 . (4.2.2b) 

 

 The result U(II )(x, 0+ )  for the Rayleigh-Sommerfeld theory of the second 

kind is more complicated.  To derive it, we require the two-dimensional version of 

Eq. (2.1.34): 

 

  U(II )(x, 0+ ) =  −
1

2π
∂ U (inc)( ′ x , ′ z )

∂ ′ z 
 

′ z =0
G(x − ′ x ,z) d ′ x 

−d 2

d 2

∫  . (4.2.3) 

 
Here G(x, z) is the two-dimensional Green function, 
 

  G(x, z) =  iπ H0
(1) k x 2 +  z2⎛ 

⎝ 
⎞ 
⎠  , (4.2.4) 
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Hn
(1)  being the Hankel function of the first kind and nth order.  If we let  in Eq. 

(4.2.3) and use Eqs. (4.2.1) and (4.2.4), we find that 

z = 0+

 

  U(II )(x, 0+ ) =  
k
2

H0
(1) k x − ′ x ( ) d ′ x 

−d 2

d 2

∫  . (4.2.5) 

 

 Let us examine the above integral in the three regions x > d/2 , x ≤ d 2 and 

x < −d 2 .  After a simple change of variables, we obtain the expressions 
 

 U(II )(x, 0+ ) =  
k
2

H0
(1) ks( ) ds

x −d 2

x +d 2

∫ for  x >  d/ 2 , 

   (4.2.6a) 
 

 U(II )(x, 0+ ) =  
k
2

H0
(1) ks( ) ds

0

x +d 2

∫  +  
k
2

H0
(1) ks( ) ds

0

− x+d 2

∫ for  x  ≤  d 2  , 

   (4.2.6b) 
 

 U(II )(x, 0+ ) =  
k
2

H0
(1) ks( ) ds

−x −d 2

−x +d 2

∫ for  x < − d 2  . 

   (4.2.6c) 
 
If we define the function F(β) by the integral 
 

  F(β) ≡  H0
(1) α( ) dα

0

β

∫  , (4.2.7) 

 
Eqs. (4.2.6a)-(4.2.6c) may be rewritten in the simple form 
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 U(II )(x, 0+ ) =  
1
2

F k x  +  d/2( )[ ] −  F k x  −  d/2( )[ ]{ } for  x  >  d/2 , 

   (4.2.8a) 
 

 U(II )(x, 0+ ) =  
1
2

F k x +  d/2( )[ ] +  F −k x −  d/2( )[ ]{ } for  x  ≤  d 2  . 

   (4.2.8b) 
 

Equations (4.2.8a) and (4.2.8b) are the desired expressions for the boundary value of 

the field given by the Rayleigh-Sommerfeld theory of the second kind.  It should be 

pointed out that the function F(β) may also be expressed in closed form as10 
 

  F(β) =  βH0
(1)(β ) +  

πβ
2

H0(β) H1
(1)(β ) −  H1(β ) H0

(1)(β ){ } , (4.2.9) 

 

where H  is the Struve function of nth order. n

 In the shadow region for large x , more specifically for k x – d 2( )>>1, we 

can obtain an approximate relation for U(II )(x, 0+ ) .  We substitute from Eq. (4.2.7) 

into Eq. (4.2.8a) and use the first two terms in Hankel's asymptotic expansion for 

 [see Ref. 10, pg. 364, Eq. (9.2.7)], H0
(1) α( )

 

  H0
(1) α( ) ~  e−iπ 4 eiα  

2
πα

  1 −  
i

8α
⎛ 
⎝ 

⎞ 
⎠  . (4.2.10) 

 
Equation (4.2.8a) then becomes 
 

 

U(II )(x, 0+ ) ≈  
k e−iπ 4

2π
 eiks 

1
ks( )1 2  −  

i
8 ks( )3 2

⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥  ds
x −d 2

x +d 2

∫

≈  k e−iπ 4 
2π

 eik x eik ′ s  1
k x + k ′ s ( )1 2  −  i

8 k x + k ′ s ( )3 2
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥  d ′ s   .

−d 2

d 2

∫
 

  (4.2.11) 
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We can approximate the quantities in the square brackets on the second line of Eq. 

(4.2.11) by their Taylor series, keeping only terms of order k x( )−1 2  and k x( )−3 2: 

 

 
1

k x + k ′ s ( )1 2  −  
i

8 k x + k ′ s ( )3 2  ≈  
1

k x( )1 2  −  
1

k x( )3 2  
i
8

 +  
′ s 

2
⎛ 
⎝ 

⎞ 
⎠  . 

   (4.2.12) 
 
After integration, Eq. (4.2.11) then simplifies to 
 

U(II )(x, 0+ )  ≈  
 e−iπ 4 

2π
 
eik x

k x
 2sin kd 2( ) +  

i
k x

 
kd
2

cos kd 2( ) −  
5
4

sin kd 2( )⎡ 
⎣ 

⎤ 
⎦ 

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

 . 

   (4.2.13) 
 

Hence, deep into the shadow region where k x – d 2( )>>1, U(II )(x, 0+ )  decays as 

k x( )−1 2 , except when the width d of the slit is an integer multiple of the wavelength, 

in which case it decays as k x( )−3 2. 

 

4.2.2 Comparison of Results 

 We can now proceed with our comparison.  The FD-TD numerical results for 

the electric field  for the case of E-polarized illumination are shown in Figs. 

4-13 and 4-14 together with the predictions of the two Rayleigh-Sommerfeld theories, 

Ey (x,0+ )

U(I )(x,0+ ) and U(II )(x, 0+ ) .  Figures 4-15 and 4-16 contain the corresponding plots 

for H-polarized illumination.  Because the phase of U(I )(x,0+ ) in the slit is simply 

equal to zero, it is not shown in Figs. 4-13 through 4-16. 

 From the plots, we see that neither U(I )(x,0+ ) nor U(II )(x, 0+ )  agree well 

with the numerical results for all values of x.  Nevertheless, there is a reasonable 

agreement over a certain range of x-values.  For E-polarization,  resembles Ey (x,0+ )

U(II )(x, 0+ )  in the slit ( x ≤ d 2) and Ey (x,0+ ) = U(I )(x,0+ ) = 0 in the shadow 

region ( x > d 2).  For H-polarization, Hy(x,0+ ) = U(I )(x,0+ ) = 1 in the slit and 
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Hy(x,0+ ) resembles U(II )(x, 0+ )  in the shadow region.  Although the predictions of 

the usual Kirchhoff theory (see Section 2.1.5) are not shown in these plots, it is 

evident that, since for that theory U(K )(x, 0+ )  = 1
2 U(I) (x,0+ ) + U(II )(x,0+ )[ ], the 

agreement between U(K )(x, 0+ )  and the numerical results is rather poor for all x-

values. 

 As was explained in Section 4.2.1, when the width of the slit is equal to an 

integer number of wavelengths, i.e., when d = mλ  (m being a positive integer), the 

field distribution U(II )(x, 0+ )  predicted by the Rayleigh-Sommerfeld theory of the 

second kind decays more rapidly into the shadow region.  From the figures for H-

polarization, Figs. 4-15 and 4-16, we see that this more rapid decay causes a 

substantial discrepancy between U (II)(x,0+ )  and Hy (x,0+ )  for x > d 2 when d = 

mλ.  However, since the agreement between U (II)(x,0+ )  and Hy (x,0+ )  in the 

shadow region is excellent for d = 0.2λ, 0.5λ and 1.5λ, one would expect a good 

agreement in that region in general, provided that d ≠ mλ . 

 From the preceeding discussion, it is appears that, by modifying the Rayleigh-

Sommerfeld boundary values, we can obtain a much better approximation to the exact 

results than is provided by the Rayleigh-Sommerfeld theories themselves.  

Specifically, we can introduce two sets of modified boundary values (denoted by 

superscripts M1 and M2): 

 

 
U(M1)(x,0+ ) =  U(I) (x,0+ )

=  0 for  x  >  
d
2

 ,
 

   (4.2.14a) 
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U(M1)(x,0+ ) =  U(II )(x, 0+ )

=  
1
2

F k x +  d/2( )[ ] +  F −k x −  d/2( )[ ]{ } for  x  ≤  
d
2

 ,
 

   (4.2.14b) 
 
and 
 

 
U(M2)(x, 0+ ) =  U( II)(x,0+ )

=  
1
2

F k x  +  d/2( )[ ] −  F k x  −  d/2( )[ ]{ } for  x  >  
d
2

 ,
 

   (4.2.15a) 
 

 
U(M2)(x, 0+ ) =  U( I)(x, 0+ )

=  1 for  x  ≤  
d
2

 .
 

   (4.2.15b) 
 

The first set, Eqs. (4.2.14a) and (4.2.14b), should yield a reasonable approximation to 

the electric field  for E-polarization, whereas the second, Eqs. (4.2.15a) and 

(4.2.15b), should yield a reasonable approximation to the magnetic field 

Ey (x,0+ )

Hy(x,0+ ) 

for H-polarization.  However, as is evident from Figs. 4-13 through 4-16, the error 

between these modified boundary values and the exact results depends on the width 

of the slit and, for certain widths, it can be significant. 

 One can obtain new approximate theories of diffraction by propagating the 

boundary values U(M1)(x,0+ ) and U(M2)(x, 0+ )  into the half-space z ≥ 0.  Such new 

theories, and their generalizations for three-dimensional electromagnetic fields, will 

be discussed in Section 5.1. 
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CHAPTER 5 
 

NEW METHODS IN APERTURE DIFFRACTION 

 

 

 In this Chapter, we propose some new approaches for treating diffraction by 

an aperture in a thin screen.  Except for a few preliminary results, these new methods 

are still relatively untested. 

 

5.1  IMPROVED DIFFRACTION THEORIES FOR THE NEAR FIELD 
 

 We first consider two new theories of diffraction that are modifications of the 

scalar Rayleigh-Sommerfeld theories.  These new theories should provide better 

approximations to near fields of apertures in Dirichlet-type and in Neumann-type 

screens*.  We then discuss the analogous modifications of the e and the m 

electromagnetic theories of diffraction. 

 

5.1.1 New Scalar Theories 

 We can generalize the modified boundary values U(M1)  and U(M2)  that were 

introduced in Section 4.2.2 so that they apply to any field incident from the half-space 

z < 0 and to an aperture of arbitrary shape (see Fig. 2-1 for notation).  In the plane 

 immediately behind the screen, we then have, instead of Eqs. (4.2.14a) and 

(4.2.14b),  

z = 0+

                                                                                                                                           
* As was already mentioned in Section 2.1.5, the Rayleigh-Sommerfeld theories are often used as 
approximations for fields diffracted by apertures in Dirichlet-type or Neumann-type screens, even 
though these theories were not originally intended for such screens. 
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    U

(M1)(ρ, 0+ ) =  0 on S , (5.1.1a) 
 
    U

(M1)(ρ, 0+ ) =  U(II )(ρ,0+ ) in A  (5.1.1b) 
 
and, instead of Eqs. (4.2.15a) and (4.2.15b), 
 
    U

(M2)(ρ,0+ ) =  U (II) (ρ,0+ ) on S , (5.1.2a) 
 
    U

(M2)(ρ,0+ ) =  U (inc)(ρ,0) in A . (5.1.2b) 
 

Here U(II )(ρ,0+ ) is simply the boundary value of the field given by the Rayleigh-

Sommerfeld theory of the second kind [see Eq. (2.1.34)], 
 

  

  

U(II )(ρ,0+ ) =  –
1

2π
∂ U(inc)( ′ ρ , ′ z )

∂ ′ z 
 

′ z =0
G(ρ − ′ ρ ,0)

A
∫   d2 ′ ρ  , (5.1.3) 

 

  G(ρ,z ) =  
eik ρ 2+  z2

ρ 2 +  z2
 . (5.1.4) 

 

 If we use Rayleigh's first diffraction formula (2.1.10) to propagate the 

modified boundary values U(M1)(ρ, 0+ ) and U(M2)(ρ,0+ ) into the half-space z ≥ 0, 

we obtain the expressions 

 

  

  

U(M1)(ρ, z) =  –
1

2π
U (II)(ρ, 0+ ) 

∂ G(ρ− ′ ρ ,z)
∂ z

A
∫   d2 ′ ρ  (5.1.5) 

and 
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U(M2)(ρ,z ) =  – 1
2π

U(inc) (ρ,0) ∂ G(ρ − ′ ρ , z)
∂ z

A
∫   d2 ′ ρ 

– 1
2π

U(II )(ρ,0+ ) ∂ G(ρ − ′ ρ , z)
∂ z

S
∫   d2 ′ ρ  .

 (5.1.6) 

 

These are the two new approximate diffraction formulas.  It should be noted that their 

average is equal to the field given by the Kirchhoff theory, i.e.,  
 

  

1
2

 U (M1)(ρ, z) +  U (M2) (ρ,z)[ ] =  
1
2

 U(I )(ρ,z) +  U(II )(ρ, z)[ ]
=  U(K )(ρ,z ) .

 (5.1.7) 

 

 It is beyond the scope of this work to examine the full ramifications of these 

new approximate scalar theories or to determine how well, in general, their 

predictions agree with exact results.  Nevertheless, from our discussion in Section 

4.2.2, we would expect the first (second) modified theory U(M1)(ρ, z) U (M2)(ρ,z)[ ] 
to provide a reasonable approximation to the field behind a Dirichlet-type (Neumann-

type) screen.  Furthermore, the new theories agree with the exact boundary conditions 

over a portion of the aperture plane:  U(II )(ρ,0+ ) = UD(ρ,0) = 0   and   on S

U(M2)(ρ,0+ )  = UN (ρ,0) = U (inc)(ρ,0) .  in A

 

5.1.2 New Electromagnetic Theories 

 We can use an analogous approach to obtain two new electromagnetic 

theories of diffraction from the m and e-theories discussed in Section 2.2.3.  These 

new electromagnetic theories, which we denote by the superscripts M1 and M2, 

should yield a better approximation to the diffracted fields behind an aperture in a 

perfectly conducting screen. 
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 One of the major inadequacies of the e-theory is that it gives a non-zero value 

for the tangential electric field on the surface of the perfect conductor.  We can 

remedy this deficiency by introducing the modified boundary values 
 
    ̂ z × E(M1) (ρ,0+ ) =  0 on S (5.1.8a) 

 
    ̂ z × E(M1) (ρ,0+ ) =  ˆ z × E(e)(ρ,0+ ) in A , (5.1.8b) 
 

where E(e)(ρ,0+ ) is the boundary value of the electric field in the e-theory, 

 

 

  

E(e)(ρ,0+ ) =  lim  
z→0+

 
i

2πk
∇ × ∇ × ˆ z × H(inc)( ′ ρ ,0)[ ] G(ρ− ′ ρ ,z)

A
∫  d2 ′ ρ  . 

   (5.1.9) 
 

We can now apply Eqs. (2.2.11a) and (2.2.11b) to determine the electric and 

magnetic fields predicted by the first modified theory for the half-space z ≥ 0.  They 

are given by the formulas 
 

  

  

E( M1)(ρ,z) =  
1

2π
∇ × ˆ z × E(e)( ′ ρ ,0+ )[ ] G(ρ− ′ ρ ,z)

A
∫  d2 ′ ρ  , (5.1.10a) 

 

  

  

H(M1)(ρ,z ) =  –
i

2πk
∇ × ∇ × ˆ z × E(e)( ′ ρ ,0+ )[ ] G(ρ− ′ ρ ,z)

A
∫  d2 ′ ρ  . 

   (5.1.10b) 
 

 It is possible to improve the m-theory in a similar manner by setting the x and 

y-components of the magnetic field in the aperture equal to their correct values, 

namely, equal to those of the incident magnetic field (see Section 2.2.1), 
 
    ̂ z × H(M2) (ρ,0+ ) =  ˆ z × H(inc)(ρ, 0) in A , (5.1.11a) 
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    ̂ z × H(M2) (ρ,0+ ) =  ˆ z × H(m) (ρ,0+ ) on S . (5.1.11b) 
 

In these formulas, H(M2) (ρ,0+ )  is the boundary value of the magnetic field given by 

the m-theory, 
 

 

  

H(m)(ρ, 0+ ) =  lim  
z→0+

 –
i

2πk
∇ × ∇ × ˆ z × E(inc)( ′ ρ ,0)[ ] G(ρ− ′ ρ ,z)

A
∫  d2 ′ ρ  . 

   (5.1.12) 
 

By again making use of Eqs. (2.2.11a) and (2.2.11b), we find that the electric and 

magnetic fields predicted by this second modified theory for the half-space z ≥ 0 are 
 

 

  

H(M2) (ρ,z) =  1
2π

∇ × ˆ z × H(inc)( ′ ρ , 0)[ ] G(ρ − ′ ρ , z)
A
∫  d2 ′ ρ 

+  1
2π

∇ × ˆ z × H(m)( ′ ρ ,0+ )[ ] G(ρ− ′ ρ ,z)
S
∫  d2 ′ ρ  ,

 

  (5.1.13a) 
 

 

  

E( M2)(ρ, z) =  i
2πk

∇× ∇ × ˆ z × H(inc)( ′ ρ ,0)[ ] G(ρ− ′ ρ ,z)
A
∫  d2 ′ ρ 

+  i
2πk

∇ × ∇ × ˆ z × H(m)( ′ ρ ,0+)[ ] G(ρ − ′ ρ , z)
S
∫  d2 ′ ρ  .

 

  (5.1.13b) 
 

 Even though both of the new electromagnetic diffraction theories satisfy 

Maxwell's equation, they obviously give very different predictions for the fields 

transmitted through an aperture in a perfectly conducting screen.  It is still neccessary 

to determine which one of the two theories is better and under what conditions. 
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 It should be pointed out that for both scalar and electromagnetic fields the 

new theories are more difficult to employ than the usual approximate theories 

because they require additional integrations.  A comparison with exact results for 

several different cases is therefore still needed in order to decide whether the 

additional computation efforts are warranted. 
 
 

5.2  ITERATIVE FOURIER-BASED ALGORITHM 
FOR APERTURE DIFFRACTION 

 

 We will now describe a new algorithm for solving rigorous diffraction 

problems that involve apertures in infinitely thin screens*.  For these types of 

problems, this algorithm requires far less computer time and memory than the finite-

difference time-domain method (for references see Appendix E), and also has some 

advantages over the method of moments2,3 because it does not require matrix 

inversion.  It can be implemented very effectively with fast Fourier transforms 

(FFT's). 

 When the angular spectrum representation is used to analyze rigorous aperture 

diffraction, the mixed boundary value problem is posed in terms of dual integral 

equations for the angular spectrum amplitude of the transmitted field.  The new 

algorithm is an iterative solution of such integral equations which bears some 

resemblance to the iterative algorithms used in phase retrieval.4-7  Here, we will 

discuss its implementation for scalar fields diffracted by apertures in either Dirichlet-

type or Neumann-type screens, and for electromagnetic fields diffracted by apertures 

                                                                                                                                           
* After this work was completed, the author became aware of a related approach for solving diffraction 
and scattering problems (see Ref. 1 and references therein).  However, that approach does not involve 
the same integral equations as the one described here. 
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in perfectly conducting screens.  It may be possible to adapt the algorithm to other 

situations as well. 

 

5.2.1 Dual Scalar Integral Equations 

 We begin by deriving the dual integral equations8-13 for scalar fields.  It will 

become apparent later that, in fact, these integral equations can be written down by 

inspection with the help of Eqs. (2.1.8) and (2.1.9).  Nevertheless, the derivation is 

instructive because it shows how to compute the reflected field once the transmitted 

field has been determined, and because it provides a proof of Eqs. (2.1.8) and (2.1.9). 

 Let us use the angular spectrum representation (see Section 2.1.3) for the 

incident and the reflected fields in the half-space z ≤ 0, 
 

  U(inc) (ρ,z) =  a(inc)(u⊥ ) ∫ eiku⊥• ρ eikuz z  d2u⊥  , (5.2.1a) 

 

  U(rfl)(ρ,z ) =  a(rfl)(u⊥ ) ∫ eiku⊥• ρ e−ikuzz  d2u⊥  (5.2.1b) 

 
and for the transmitted field in the half-space z ≥ 0, 
 

  U(trn)(ρ,z) =  a(trn)(u⊥) ∫ eiku ⊥•ρ eikuzz  d2u⊥  , (5.2.1c) 

 
  uz  =  1 −  u⊥

2 for  u⊥ ≤  1 , (5.2.2a) 

 
  uz  =  i u⊥

2 −  1  for  u⊥ >  1 . (5.2.2b) 

 
The continuity conditions (2.1.4) and (2.1.5) require that 
 

   U
(inc) (ρ,0− ) +  U(rfl)(ρ,0− ) =  U (trn)(ρ,0+ ) in A 

   (5.2.3) 
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and 

 
  

∂ U(inc) (ρ,z)
∂ z

 
z=0−

+  
∂ U (rfl)(ρ,z)

∂ z
 
z=0−

=  
∂ U(trn)(ρ,z)

∂ z
 

z=0+
in A . 

   (5.2.4) 
 

Therefore, in the aperture, the following integral relations must be fulfilled by the 

angular spectum amplitudes a(inc)(u⊥ ), a(rfl) (u⊥)  and a(trn)(u⊥): 
 

 
  

a(inc)(u⊥) + a(rfl)(u⊥ )[ ] ∫ eiku⊥• ρ d2u⊥ = a (trn)(u⊥) ∫ eiku ⊥•ρ d2u⊥ in A , 

  (5.2.5) 
 

 
  

uz a(inc) (u⊥ ) − a(rfl)(u⊥)[ ] ∫ eiku⊥ •ρ d2u⊥ = uza(trn) (u⊥ ) ∫ eiku⊥• ρ d2u⊥ in A . 

  (5.2.6) 

 

(a) Dirichlet-Type Screen 

 On the surface of a Dirichlet-type screen, since the field is equal to zero, the 

angular spectrum amplitudes must also satisfy the relations 
 

   , (5.2.7) 
  

a(inc)(u⊥ ) +  a(rfl)(u⊥ )[ ] ∫ eiku⊥•ρ d2u⊥ =  0 on S

 

   . (5.2.8) 
  

a(trn)(u⊥) ∫ eiku⊥ •ρ d2u⊥  =  0 on S

 

If we add Eq. (5.2.7) to the left-hand side of Eq. (5.2.5), add Eq. (5.2.8) to the right-

hand side and take the Fourier transform of the resulting equation, we find that the 

angular spectum amplitude of the reflected field can be obtained directly from the 

angular spectrum amplitudes of the incident and the transmitted fields using the 

formula 
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  a(rfl)(u⊥) =  a (trn)(u ⊥) −  a (inc)(u⊥)  . (5.2.9) 
 

Then, according to Eqs. (5.2.6) and (5.2.8), for a Dirichlet-type screen the angular 

spectrum amplitude of the transmitted field obeys the dual integral equations 
 

 

  

a(trn)(u⊥) ∫ eiku⊥ •ρ d2u⊥  =  0 on S ,

uz  a(trn)(u⊥) ∫ eiku ⊥•ρ d2u⊥  =  −
i
k

 
∂ U(inc)(ρ,z)

∂ z
 
z=0

in A .

⎫ 

⎬ 
⎪ 

⎭ 
⎪ 

 (5.2.10) 

 

The first of these equations ensures that the transmitted field is zero on the screen and 

the second that the z-derivative of the transmitted field in the aperture is equal to the 

z-derivative of the incident field.  The second equation is therefore equivalent to Eq. 

(2.1.8). 

 

(b) Neumann-Type Screen 

 On a Neumann-type screen, since the normal derivative of the field is 

identically zero, in lieu of Eqs. (5.2.7) and (5.2.8) we have 
 

   , (5.2.11) 
  

uz a(inc)(u⊥ ) −  a(rfl)(u ⊥)[ ] ∫ eiku⊥ •ρ d2u⊥ =  0 on S

 

   . (5.2.12) 
  

uz  a(trn)(u⊥) ∫ eiku ⊥•ρ d2u⊥  =  0 on S

 

From these relations and Eq. (5.2.6), we find that a(rfl) (u⊥)  is now related to 

 and a  by the expression a(inc)(u⊥ ) (trn)(u⊥)
 
  a(rfl)(u⊥) =  a (inc)(u⊥) −  a(trn)(u⊥)  (5.2.13) 
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The dual integral equations for a Neumann-type screen are then 
 

  

  

uz  a(trn)(u⊥) ∫ eiku ⊥•ρ d2u⊥  =  0 on S ,

a(trn)(u⊥) ∫ eiku⊥ •ρ d2u⊥  =  U (inc)(ρ,0) in A .

⎫ 

⎬ 
⎪ 

⎭ 
⎪ 

 (5.2.14) 

 

In this case, the first equation ensures that the normal derivative of the transmitted 

field is zero on the screen and the second that the transmitted field in the aperture is 

equal to the incident field, as required by Eq. (2.1.9). 
 

5.2.2 Iterative Fourier-Based Algorithm for Scalar Fields 

 An iterative approach for solving both Eq. (5.2.10) and Eq. (5.2.14) becomes 

evident from the Fourier transform relations between the field in the plane z = 0+  and 

the angular spectrum amplitude a(trn)(u⊥) (see Section 2.1.3), 

 

  U(0)(ρ) =  a(trn)(u⊥ ) ∫ eiku⊥• ρ d2u⊥ , (5.2.15a) 

 

  a(trn)(u⊥) =  
k

2π
⎛ 
⎝ 

⎞ 
⎠ 

2
 ∫ U(0)( ′ ρ ) e−iku⊥• ′ ρ d2 ′ ρ  , (5.2.15b) 

 

and the analogous relations between the z-derivative of the field in that plane and 

, a(trn)(u⊥)
 

  Uz
(0)(ρ) =  ik uz a(trn)(u⊥ ) ∫ eiku⊥• ρ d2u⊥  , (5.2.16a) 

 

  a(trn)(u⊥) =  –
i

kuz
 

k
2π

⎛ 
⎝ 

⎞ 
⎠ 

2
Uz

(0)(ρ) e−iku ⊥• ′ ρ d2 ′ ρ ∫  . (5.2.16b) 
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Here we have introduced the compact notation 
 

  U(0)(ρ) ≡  U (trn) (ρ,0+ )  ,  Uz
(0)(ρ) ≡  

∂ U(trn)(ρ,z)
∂ z

 
z=0+

 . (5.2.17) 

 
The iterative algorithm then consists of the following steps: 
 

0) Assume initially that Uz
(0)(ρ) is given by the boundary values of the 

Rayleigh-Sommerfeld theory of the second kind (RS II). 

1) Use Eq. (5.2.16b) to calculate the angular spectrum amplitude a(trn)(u⊥). 

2) Use Eq. (5.2.15a) to calculate U .  Over the portion of the aperture 

plane where the value of U  is prescribed, set it equal to that value. 

(0)(ρ)
(0)(ρ)

3) Use Eq. (5.2.15b) to calculate a(trn)(u⊥). 

4) Use Eq. (5.2.16a) to calculate Uz
(0)(ρ).  Over the portion of the aperture 

plane where the value of Uz
(0)(ρ) is prescribed, set it equal to that value.  

Go back to step #1. 
 

The necessary calculations for Dirichlet-type screens are shown explicitly in Fig. 5-1 

and those for Neumann-type screens in Fig. 5-2.  All the integrations can be 

performed with FFT's.  The algorithm can also be started at step #3 with U  

given by the boundary values of the Rayleigh-Sommerfeld theory of the first kind 

(RS I).  Other initial values of U

(0)(ρ)

z
(0)(ρ) or U  can also be used.  The ones just 

mentioned are the simplest. 

(0)(ρ)

 The preceding steps do not guarantee the correct result since, without edge 

conditions, the rigorous diffraction problem does not necessarily have a unique 

solution (see Section 2.1.1).  However, it is relatively simple to introduce a small 

"loss" into the algorithm so that the solution that obeys edge conditions is chosen. 
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 U(0)(ρ) =
 0 on S

 U (inc)(ρ, 0) in A

⎧ 
⎨ 
⎩ 

 

RS I

 

    ↓
 

  

 

 U(0)(ρ) =

 0 on S

 a(trn)(u⊥ ) ∫ eiku⊥• ρ d2u⊥ in A

⎧ 

⎨ 
⎪ 

⎩ ⎪ 
 

2

  ⇒  a(trn)(u⊥) =
k

2π
⎛ 
⎝ 

⎞ 
⎠ 

2
 ∫ U(0)( ′ ρ )  e−iku ⊥• ′ ρ d2 ′ ρ  

3

 

   ⇓  ⇑
 

 

 a(trn)(u⊥ ) = –
i

kuz
 

k
2π

⎛ 
⎝ 

⎞ 
⎠ 

2
Uz

(0)(ρ) e−iku⊥• ′ ρ d2 ′ ρ ∫  

1

 
⇐

 

 

 Uz
(0)(ρ) =

 ik uz a(trn)(u⊥ ) ∫ eiku⊥• ρ d2u⊥ on S

 
∂ U (inc) (ρ,z)

∂ z
 
z=0

in A

⎧ 

⎨ 
⎪ 

⎩ 
⎪ 

 

4

 

  ↑
 

    

  

 

 Uz
(0)(ρ) =

 0 on S

 
∂ U (inc)(ρ,z)

∂ z
 
z=0

in A

⎧ 

⎨ 
⎪ 

⎩ ⎪ 
 

RS II

 

 
Figure 5-1  Block diagram of the iterative Fourier-based algorithm for a Dirichlet-
type screen. 
 
 

This loss can be, for example, a weakly attenuating filter applied to the angular 

spectum amplitude a  for large values of u(trn)(u⊥) ⊥ .  The filtering favors the solution 

with the smallest values of a(trn) (u⊥)  for large u⊥ .  Hence, in the space domain, the 

algorithm favors a form for U  that is free of singularities, which is precisely the 

one that satisfies edge conditions.  Even with this type of filtering, there no assurance 

that, as the number of iterations is increased, the results generated by the algorithm 

will converge to the correct solution.  The algorithm could simply oscillate between 

 

(0)(ρ)
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 U(0)(ρ) =
 0 on S

 U (inc)(ρ, 0) in A

⎧ 
⎨ 
⎩ 

 

RS I

 

    ↓

  

 

 U(0)(ρ) =
 a(trn)(u⊥ ) ∫ eiku⊥• ρ d2u⊥ on S

 U (inc)(ρ, 0) in A

⎧ 

⎨ 
⎪ 

⎩ ⎪ 
 

2

  ⇒  a(trn)(u⊥) =
k

2π
⎛ 
⎝ 

⎞ 
⎠ 

2
 ∫ U(0)( ′ ρ )  e−iku ⊥• ′ ρ d2 ′ ρ  

3

 

   ⇓  ⇑
 

 

 a(trn)(u⊥ ) = –
i

kuz
 

k
2π

⎛ 
⎝ 

⎞ 
⎠ 

2
Uz

(0)(ρ) e−iku⊥• ′ ρ d2 ′ ρ ∫  

1

 ⇐  

 

 Uz
(0)(ρ) =

 0 on S

 ik uz a(trn)(u⊥ ) ∫ eiku⊥• ρ d2u⊥ in A

⎧ 

⎨ 
⎪ 

⎩ ⎪ 
 

4

 

  ↑
 

    

  

 

 Uz
(0)(ρ) =

 0 on S

 
∂ U (inc)(ρ,z)

∂ z
 
z=0

in A

⎧ 

⎨ 
⎪ 

⎩ ⎪ 
 

RS II

 

 
Figure 5-2  Block diagram of the iterative Fourier-based algorithm for a Neumann-
type screen. 
 
 

several different results without ever converging.  Nevertheless, the numerical results 

presented in the next section suggest that, in fact, the algorithm converges to the 

correct solution very rapidly. 

 It should be pointed out that step #1 of the algorithm could create difficulties 

because there is a singularity present on the circle u⊥ =1 (uz = 0 ).  If the algorithm is 

implemented with FFT's, the singularity can be avoided by choosing the values of u⊥  

where a  is sampled so that they are not too close to u(trn)(u⊥) ⊥ =1. 
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 Let us examine step #2 of the first iteration through the algorithm when the 

starting values are the boundary values of the Rayleigh-Sommerfeld theory of the 

second kind.  For a Dirchlet-type screen (see Fig. 5-1), the field U  at this step is 

simply equal to the aperture plane field U

(0)(ρ)
(M1)(ρ, 0+ ) of the first modified theory of 

Section 5.1.1 and, for a Neumann-type screen (see Fig. 5-2), it is equal to the field 

U(M2)(ρ,0+ ) of the second modified theory.  Therefore, these modified theories can 

be viewed as the first in a series of iterative improvements to the Rayleigh-

Sommerfeld theory of the second kind. 

 

5.2.3 Numerical Results 

 In order to test the new algorithm, we applied it to the simple two-dimensional 

diffraction problem considered in Chapters 3 and 4: a slit illuminated by a unit 

amplitude, normally incident, plane wave.  The necessary one-dimensional 

integrations were all performed with FFT's and a weak exponential filter of the form 

 was applied to a  for uexp − 0.1 (u⊥ −  25){ } (trn)
⊥ > 25.  The numerical results for 

slits of width d = 0.5λ and d = 2λ in a Dirichlet-type screen are shown in Fig. 5-3.  

By comparing these plots with the corresponding plots in Figs. 4-13 and 4-14, we see 

that the algorithm does produce the correct solution.  In fact, it converges to this 

solution very  rapidly. 

 

5.2.4 Dual Integral Equations and the Iterative Fourier-Based Algorithm for  

 Electromagnetic Fields 

 To obtain the dual electromagnetic integral equations, we use an approach 

similar to that for scalar fields.  We represent the incident, reflected and transmitted 

electric fields by angular spectra of plane waves (see Section 2.2.2): 



  113 

 



  114 

 E(inc)(ρ,z) =  e⊥
(inc)(u⊥) –  ˆ z  

u⊥ • e⊥
(inc)(u⊥ )
uz

⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥  ∫ eiku ⊥•ρ eikuzz  d2u⊥  , 

   (5.2.18a) 
 

 E(rfl)(ρ, z) =  e⊥
(rfl)(u⊥) +  ˆ z  

u⊥ • e⊥
(rfl)(u⊥)
uz

⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥  ∫ eiku⊥• ρ e–ikuz z  d2u⊥  , 

   (5.2.18b) 
 

  E(trn)(ρ,z ) =  e⊥
(trn)(u⊥ ) –  ˆ z  

u⊥ • e⊥
(trn)(u⊥)
uz

⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥  ∫ eiku⊥• ρ eikuz z  d2u⊥  . 

   (5.2.18c) 
 

The transverse vectorial angular spectrum amplitude e  is related to the 

transverse electric field E  in the plane 

⊥
(inc)(u⊥)

⊥
(inc) = E(inc) − ˆ z • E(inc) z = 0+  by the Fourier 

transform 

 

  e⊥
(inc)(u⊥) =  

k
2π

⎛ 
⎝ 

⎞ 
⎠ 

2
 ∫ E⊥

(inc)( ′ ρ ,0+ ) e−iku⊥• ′ ρ d2 ′ ρ  , (5.2.19) 

 

and analogous expressions relate e  and e  to E  and 

.  Furthermore, the magnetic fields H

⊥
(rfl)(u⊥ ) ⊥

(trn)(u⊥) ⊥
(rfl)(ρ, 0+ )

E⊥
(trn)(ρ,0+ ) (inc),  H(rfl) and H(trn)  are given by 

equations identical to (5.2.18a)-(5.2.18c) with the substitutions 

 
  E(inc) ⇒ H(inc) ,   E(rfl) ⇒ H(rfl) ,   E(trn) ⇒ H(trn)  (5.2.20) 
and 
   . (5.2.21) e(inc) ⇒ h⊥

(inc) ,   e⊥
(rfl) ⇒ h⊥

(rfl) ,   e⊥
(trn) ⇒ h⊥

(trn)

 

 To ensure the continuity of the electric and magnetic fields in the aperture, the 

transverse vectorial angular spectrum amplitudes must obey the two conditions 
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e⊥
(inc)(u⊥) +  e⊥

(rfl)(u⊥ ) –  
ˆ z 

uz
  u⊥ • e⊥

(inc)(u⊥) –  e⊥
(rfl)(u⊥)[ ]⎧ 

⎨ 
⎩ 

⎫ 
⎬ 
⎭ 
 ∫ eiku⊥ •ρ d2u⊥

=  e⊥
(trn)(u⊥) –  ˆ z  

u⊥ • e⊥
(trn) (u⊥ )
uz

⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥  ∫ eiku⊥ •ρ d2u⊥ in A
 

  (5.2.22) 
and 
 

 

  

h⊥
(inc)(u⊥) +  h⊥

(rfl)(u⊥) –  
ˆ z 

uz
  u⊥ • h⊥

(inc)(u⊥ ) –  h⊥
(rfl)(u⊥)[ ]⎧ 

⎨ 
⎩ 

⎫ 
⎬ 
⎭ 
 ∫ eiku⊥ •ρ d2u⊥

=  h⊥
(trn) (u⊥ ) –  ˆ z  

u⊥ • h⊥
(trn) (u⊥ )
uz

⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥  ∫ eiku⊥ •ρ d2u⊥ in A .

 

  (5.2.23) 
 

Furthermore, since on the surface of the perfect conductor both the tangential electric 

field and the normal magnetic field must be zero, the angular spectrum amplitudes 

must also satisfy 

 

  , (5.2.24) 
  

e⊥
(inc)(u⊥ ) +  e⊥

(rfl)(u⊥)[ ] ∫ eiku⊥ •ρ d2u⊥  =  0 on S

 

  , (5.2.25) 
  

e⊥
(trn)(u⊥) ∫ eiku ⊥•ρ d2u⊥  =  0 on S

 

 
  

1
uz

 u⊥ • h⊥
(inc)(u⊥) +  h⊥

(rfl)(u⊥)⎡ 
⎣ 

⎤ 
⎦  ∫ eiku⊥•ρ d2u⊥  =  0 on S , (5.2.26) 

 

 
  

u⊥ • h⊥
(trn) (u⊥ )
uz

 ∫ eiku⊥ •ρ d2u⊥  =  0 on S . (5.2.27) 
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From Eqs. (5.2.22) through (5.2.27), it can readily be shown that the following 

relationships hold: 
 
   , (5.2.28) e⊥

(rfl)(u⊥) =  e⊥
(trn) (u⊥ ) −  e⊥

(inc)(u⊥)

 
   . (5.2.29) h⊥

(rfl)(u⊥) =  h⊥
(inc)(u⊥ ) −  h⊥

(trn)(u⊥)

 

 Therefore, according to Eqs. (5.2.23) and (5.2.25), the dual integral equations* 

for the transmitted fields are 
 

  

  

e⊥
(trn)(u⊥) ∫ eiku ⊥•ρ d2u⊥  =  0 on S ,

h⊥
(trn)(u⊥) ∫ eiku⊥•ρ d2u⊥  =  H⊥

(inc)(ρ,0) in A .

⎫ 

⎬ 
⎪ 

⎭ 
⎪ 

 (5.2.30) 

 

These equations are obviously coupled since the angular spectrum amplitudes 

 and h  are related to each other by the expressions e⊥
(trn)(u⊥) ⊥

(trn) (u⊥)

 

  

h(trn) (u⊥) =  u ×  e(trn)(u⊥)

=  u ×  e⊥
(trn)(u⊥ ) –  ˆ z  

u⊥ • e⊥
(trn)(u⊥)
uz

⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥  ,
 (5.2.31a) 

 

  

e(trn)(u⊥) =  − u ×  h(trn)(u⊥)

=  − u ×  h⊥
(trn)(u⊥ ) –  ˆ z  

u⊥ • h⊥
(trn)(u⊥ )
uz

⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥  .
 (5.2.31b) 

 

                                                                                                                                           
* There are actually four integral equations to solve simultaneously because each vector integral 
equation corresponds to a pair of scalar equations. 
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 E⊥
(0)(ρ) =

 0 on S

 E⊥
(inc) (ρ) in A

⎧ 
⎨ 
⎩ 

 

m

 

    ↓
 

  

 

 E⊥
(0)(ρ) =

 0 on S

 e⊥
(trn) (u⊥ ) ∫ eiku⊥•ρ d2u⊥ in A

⎧ 

⎨ 
⎪ 

⎩ ⎪ 
 

3

  ⇒  e⊥ (u⊥) =
k

2π
⎛ 
⎝ 

⎞ 
⎠ 

2
 ∫ E⊥

(0 )( ′ ρ ) e−iku⊥• ′ ρ d2 ′ ρ  

4

 

   ⇓  ⇑
 
 

 e(trn) (u⊥ ) = −u × h⊥
(trn) (u⊥) – ˆ z  

u⊥ • h⊥
(trn) (u⊥)
uz

⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥  

2

   h(trn)(u⊥ ) = u × e⊥
(trn)(u⊥) – ˆ z  

u⊥ • e⊥
(trn)(u ⊥)
uz

⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥  

5

 

   ⇓  ⇑
 

 

 

 h⊥(u⊥ ) =
k

2π
⎛ 
⎝ 

⎞ 
⎠ 

2
 ∫ H⊥

(0) ( ′ ρ )  e−iku⊥• ′ ρ d2 ′ ρ  
1

 ⇐  

 

 H⊥
(0)(ρ) =

 h⊥
(trn)(u⊥) ∫ eiku⊥ •ρ d2u⊥ on S

 H⊥
(inc)(ρ,0) in A

⎧ 

⎨ 
⎪ 

⎩ ⎪ 
 

6

 

  ↑
 

 

  

 

 H⊥
(0)(ρ) =

 0 on S

 H⊥
(inc)(ρ) in A

⎧ 
⎨ 
⎩ 

 

 
e

 

 
Figure 5-4  Block diagram of the iterative Fourier-based algorithm for a perfectly 
conducting screen.  Here E⊥

(0)(ρ) ≡ E⊥
(trn)(ρ, 0+ )  and H . ⊥

(0)(ρ) ≡ H⊥
(trn)(ρ,0+ )

 
 

 The iterative Fourier-based algorithm for solving Eq. (5.2.30) is similar to the 

scalar version, but it is considerably more complicated (see Fig. 5-4).  In order to pick 

out the one solution that satisfies edge conditions, a weakly attenuating filter can 

again be applied to the angular spectrum amplitudes e  and   

However, unlike the scalar case, the correct solution to the electromagnetic aperture 

⊥
(trn)(u⊥) h⊥

(trn) (u⊥)
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diffraction problem does contain singularities.  Fortunately, that solution is the least 

singular one so it is still favored by the attenuating filter. 

 As indicated in Fig. 5-4, the algorithm can be initiated with the e-theory at 

step #1 or with the m-theory at step #4.  It can readily be shown that, if the e-theory is 

used to start the algorithm, then in the first iteration the transverse electric field 

 at step #3 is equal to the transverse vector component of aperture plane 

electric field E

E⊥
(0)(ρ)

( M1)(ρ,0+ )  of the first modified electromagnetic theory.  On the other 

hand, if the m-theory is used, then at step #6 of the first iteration the transverse 

magnetic field H  is equal to the transverse component of the magnetic field ⊥
(0)(ρ)

H(M2) (ρ,0+ )  of the second modified theory.  Hence the two modified 

electromagnetic theories are first order improvements to the e and the m-theories. 
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CHAPTER 6 
 

OPTICAL VORTICES AND THEIR 

EFFECTS ON DIFFRACTION 

 

 

 The study of dislocations in an optical field, where the amplitude is zero and, 

consequently, the phase is not defined, provides an interesting insight into diffraction.  

Ever since the seminal work of Nye and Berry on these fine structures of 

wavefields,1-4 there has been a considerable effort to understand their occurrence 

under various conditions.5-16  We have already encountered edge dislocations in the 

two-dimensional diffraction patterns of Chapter 4.  We now turn our attention to 

optical vortices (screw dislocations).  For these types of dislocations, which can only 

appear in three-dimensional diffraction, the surfaces of constant phase are of the form 

of spiral staircases.  We begin with a brief discussion of the vortices present in Bessel 

beams and then examine a specific situation where a vortex dramatically affects the 

diffraction of a field. 
 
 

6.1  VORTICES IN BESSEL BEAMS 
 

 In a plane z = constant, the field in the vicinity of an optical vortex that lies 

along the z-axis can be expressed as 
 
  U(ρ,ϕ,z) =  C ρ|m| eimϕ  , (6.1.1) 
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where ρ = x2 +  y2 , cosϕ = x ρ , sinϕ = y ρ  and m is an integer, sometimes called 

the strength (or charge) of the vortex.  Hence an mth-order Bessel beam propagating 

into the half-space z > 0, which is of the form (see Section 2.1.4) 

 
  

  
Bu⊥

(m)(ρ,ϕ,z) =  Jm (ku⊥ρ) eimϕ  eikuz z , (6.1.2) 

 

possesses a vortex of strength m along the z-axis, since for small arguments the 

Bessel function can be approximated by17 
 

  Jv (β ) ≈  
β 2( )v

Γ(v +1)
 , as β → 0 . (6.1.3) 

 
This applies both to nondiffracting Bessel beams, for which 
 
  uz  =  1 −  u⊥

2  , u⊥ ≤  1 , (6.1.4a) 

 
and to evanescent ones, for which 
 
  uz  =  i u⊥

2 −  1 , u⊥ >  1 . (6.1.4a) 

 

 It is instructive to examine the behavior of the energy flux vector F  

associated with these two types of Bessel beams.  As discussed in Section 2.1.7, F  

may be written in the form 
 
   , (6.1.5) F =  2ωα A2∇φ
 

where  is the amplitude of the field and A φ  is its phase.  It follows that 
 

  F =  2ωα ˆ ϕ  
m
ρ

 +  ˆ z  kuz
⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟  Jm

2 (ku⊥ρ)  (6.1.6a) 
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and 

  F =  2ωα ˆ ϕ  
m
ρ

 Jm
2 (ku⊥ρ) e−2kz u⊥

2 − 1  , (6.1.6b) 

 

respectively, for nondiffracting and for evanescent Bessel beams,   being a unit 

vector in the azimuthal direction.  From this pair of expressions, we see that in 

nondiffracting Bessel beams the flow lines of the energy flux vector are spirals about 

the z-axis that are right (left) handed for positive (negative) m, whereas in evanescent 

Bessel beams they are concentric circles that decrease exponentially in number as z 

increases.  These two cases are illustrated in Figs. 6-1 and 6-2. 

ˆ ϕ

 
 

6.2  SPIRAL PHASE PLATE ILLUMINATED BY A GAUSSIAN BEAM 
 

 To illustrate the dramatic effect that the presence of a vortex can have on the 

diffraction of a field, we now examine the field emerging from an mth-order spiral 

phase plate, with transmission function tm(ϕ ) = eimϕ , when the plate is illuminated 

by a Gaussian beam.  This specific situation, and its generalization to illumination by 

a Laguerre-Gaussian beam, has already been examined in Ref. 18 by means of a 

decomposition of the output field in the complete set of Laguerre-Gaussian beams.  

However, explicit results were presented only for the far field.  Here we wish to 

understand how the vortex along the z-axis affects the field as it propagates from near 

zone to far zone.  Instead of using a mode decomposition, we will show that there is a 

relatively simple closed-form expression for the output field.  Since the input 

Gaussian beam is paraxial, the output is also paraxial* and, consequently, evanescent 

waves play no role in this situation. 
                                                                                                                                           
* From Eq. (6.2.4) it is apparent that the output beam is paraxial if the condition kw  is satisfied, 
which is precisely the requirement for the input beam to be paraxial. 

o>>1
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y

O

x

z

 
 

Figure 6-1  Typical flow line of the energy flux vector of a nondiffracting Bessel 
beam with positive m. 
 
 

x x

y y

z1 > 0 z2 > z1  
 

Figure 6-2  Flow lines of the energy flux vector of an evanescent Bessel beam with 
positive m. 
 
 

 So that the phase of the field emerging from the spiral phase plate is a 

continuous function of the angle ϕ , and so that there is only a single dislocation in 

the field, we take m to be an integer.  This also ensures that the amplitude of the field 

is rotationally symmetric.  In practice, the transmission function tm(ϕ ) of the phase 
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t(ϕ ) = eimϕ

z

y

wo

z = 0  
 

Figure 6-3  Spiral phase plate illuminated by a Gaussian beam of width w . o

 
 

plate can be obtained from a transparent plate of uniform refractive index with 

thickness that varies appropriately with ϕ , or from one of constant thickness with the 

correct refractive index profile.  The first approach was used in the experimental 

work described in Ref. 18. 

 For simplicity, we assume that the waist of the illuminating beam coincides 

with the plane , which is the location of the phase plate (see Fig. 6-3).  The 

field in the plane  behind the plate is then given by the expression 

z = 0−

z = 0+

 

   , (6.2.1) Um (ρ,ϕ, 0+ ) =  A e− ρ2 / wo
2
 eimϕ

 

wo  being the width of the beam waist. 

 We can use the Bessel-beam representation, in the paraxial approximation, to 

propagate the field given by Eq. (6.2.1).  The field in the half-space z > 0 is then of 

the form (see Section 2.1.4) 

 

  

  

Um (ρ,ϕ, z) =   cn(u⊥) Bu⊥

(n )(ρ,ϕ,z) du⊥

0

∞

∫
n= –∞

∞

∑  , (6.2.2) 
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   , (6.2.3) 
  
Bu⊥

(n)(ρ,ϕ,z) =  Jn(ku⊥ρ) einϕ  e−iku⊥
2z  eikz

 
with coefficients 
 

  

cn(u⊥ ) =  k2

2π
 u⊥  Um(ρ,ϕ,0+ )

0

2π

∫
0

∞

∫  e– inϕ  Jn(ku⊥ρ) ρ dρ dϕ

=  δmn Ak2u⊥ e− ρ2 / wo
2

0

∞

∫  Jm(ku⊥ρ) ρ dρ .

 (6.2.4) 

 

From Eq. (6.2.4), we see that the beam Um (ρ,ϕ, z) contains only mth-order Bessel 

beams.  If we substitute from Eqs. (6.2.3) and (6.2.4) into Eq. (6.2.2) and make the 

change of variables s , we find that = u⊥
2

 

 
Um (ρ,ϕ, z) =  

Ak2

2
 eimϕ  eikz

 J|m |(kρ s  ) J|m|(k ′ ρ s ) e−iksz 2 ds
0

∞

∫
⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 0

∞

∫

×  e− ′ ρ 2 / wo
2
 ′ ρ  d ′ ρ  .

 

   (6.2.5) 
 

The order of the Bessel functions in this expression depends only on the absolute 

value of m because . J−m = (−1)m Jm

 We can perform the integration over s in Eq. (6.2.5) by making use of the 

relations19 
 

 Jm (a s  ) Jm (b s  ) sin(cs) ds
0

∞

∫  =  
1
c

 Jm
ab
2c

⎛ 
⎝ 

⎞ 
⎠  cos

a2 +  b2

4c
 −  

mπ
2

⎛ 

⎝ 
⎜ ⎞ 

⎠ 
⎟  

   (6.2.6a) 
and 
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 Jm (a s  ) Jm (b s   ) cos(cs) ds
0

∞

∫  =  
1
c

 Jm
ab
2c

⎛ 
⎝ 

⎞ 
⎠  sin

a2 +  b2

4c
 −  

mπ
2

⎛ 

⎝ 
⎜ ⎞ 

⎠ 
⎟  . 

   (6.2.6b) 
 
We then obtain the expression 
 

  

Um (ρ,ϕ, z) = −i |m|+1 Ak2 eikρ2 2z  eimϕ  
eikz

kz

×  J|m|
kρ ′ ρ 

z
⎛ 
⎝ 

⎞ 
⎠ 

 exp − ′ ρ 2 1
wo

2  −  
ik
2z

⎛ 

⎝ 
⎜ ⎞ 

⎠ 
⎟ 

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

0

∞

∫  ′ ρ  d ′ ρ  ,
 (6.2.7) 

 

which can be simplified further with help of the integral [see Ref. 19, pg. 717, Eq.  

(6.631 7)] 

 

 
e−as2

Jm bs( ) 

0

∞

∫ s ds =  πb
8a3/ 2  e−b2 8a Im

2
 −  

1
2

b2 8a( ) −  Im
2

 +  
1
2

b2 8a( )⎡ 
⎣ 

⎤ 
⎦  ,

Re a > 0,  m > −2( ) ,

 

   (6.2.8) 
 

Iv  being a modified Bessel function of the first kind and vth order. 

 Finally, after some straightforward algebra, we obtain the following relatively 

simple result for the field in the half-space z > 0: 
 

 

Um (ρ,ϕ, z) = −i |m|+1 π  
A
k

 
ρ z g3/ 2 (z )

w3(z)
 eikρ2 2z  eimϕ  eikz

×  e− ρ2g(z ) 2w2 (z) I |m |
2

 −  
1
2

ρ2g(z )
2w2 (z )

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
 −  I |m|

2
 +  

1
2

ρ2g (z)
2w 2(z )

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥  .
 

   (6.2.9) 
Here 
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  g(z) =  1 +  i 

zr
z

 , (6.2.10) 

 

  w(z) =  wo 1 +  
z
zr

⎛ 

⎝ 
⎜ ⎞ 

⎠ 
⎟ 

2⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

1/ 2

  (6.2.11) 

and 

   zr = kwo
2 2  (6.2.12) 

 

is the Rayleigh range of the Gaussian beam that illuminates the phase plate.  It should 

be noted that Eq. (6.2.11) is identical to the formula for the width of a Gaussian beam 

propagating in free space.  Furthermore, as expected, the amplitude of Um (ρ,ϕ, z) is 

rotationally symmetric about the z-axis. 

 Let us rewrite Eq. (6.2.9) as the product 
 
  Um (ρ,ϕ, z) = U0(ρ,ϕ,z) Mm (ρ,ϕ, z) , (6.2.13) 

 
where U0(ρ,ϕ, z) is an ordinary Gaussian beam, 

 
  U0(ρ,ϕ, z) =  A 

wo
w(z)

 e−ρ 2 w2 (z) eikρ2 2R(z) e−iψ (z) eikz  , (6.2.14) 

with 

  R(z ) =  z 1 +  
zr
z

⎛ 
⎝ 

⎞ 
⎠ 

2⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥  , (6.2.15) 

 
  sinψ (z) =  

z

z2 +  zr
2

 ,      cosψ (z) =  
zr

z2 +  zr
2

 , (6.2.16) 

 
and Mm(ρ,ϕ,z)  is the modifying function 
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Mm(ρ,ϕ,z) = i|m| 

π
2

 
ρ g1/ 2 (z )

w(z)
 eimϕ  eρ2g(z ) 2w2 (z)

×  I|m |
2

 −  
1
2

ρ2g(z )
2w2 (z)

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
 −  I |m |

2
 +  

1
2

ρ2g(z )
2w2 (z )

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥  .
 (6.2.17) 

 

If m is an even integer, the modified Bessel functions in Eq. (6.2.17) can be expressed 

explicitly in terms of hyperbolic sines and cosines.  When m = 0, since there is no 

phase plate, Eq. (6.2.13) should reduce to the expression for an ordinary Gaussian 

beam and, therefore, the modifying function M0(ρ,ϕ,z) should be equal to unity.  

With the help of the expressions [see Ref. 17, pg. 443, Eqs. (10.2.13) and (10.2.14)] 

 

  
π
2γ

 I−  1 2 (γ ) =  
coshγ

γ
 , (6.2.18a) 

 

  
π
2γ

 I1 2 (γ ) =  
sinhγ

γ
 , (6.2.18b) 

 

it is straightforward to verify that indeed M0(ρ,ϕ,z) =1. 

 Let us examine the behavior of the beam Um (ρ,ϕ, z) near the z-axis.  For this 

purpose, we make use of the limiting form [see Ref. 17, pg. 375, Eq. (9.6.7)] 
 

  Iv(β) ≈  
β 2( )v

Γ(v +1)
as β → 0 . (6.2.19) 

 

Therefore, as ρ → 0, the limiting forms of the modifying function Mm(ρ,ϕ,z)  and of 

the field Um (ρ,ϕ, z) are 

 

  Mm(ρ,ϕ,z) ≈  
i |m| π

2|m |  Γ |m|
2 + 1

2( ) 
g|m |/ 2(z)
w |m| (z)

 ρ|m | eimϕ  (6.2.20) 

and 
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Um (ρ,ϕ, z) ≈  A i |m| π
2|m |

 Γ |m|
2 + 1

2( )
 

wo
w(z)

 
g(z)

w2(z)
⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 

|m|
2

e−iψ (z ) eikz  ρ|m | eimϕ

≈  A
i3|m| 2 π

23|m| 2
 Γ |m|

2 + 1
2( ) 

wo
w(z)

 
k wo

z w(z)  

⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 

|m|
2

×  exp −i 1 + |m|
2( )ψ (z )[ ] eikz  ρ|m|  eimϕ  .

 

   (6.2.21) 
 

We see that an mth-order spiral phase plate causes a vortex of strength m, ρ|m|eimϕ , 

to appear in the field along the z-axis.  It is apparent that, for m ≠ 0, the rapidity with 

which the field changes from its zero on axis value depends on the propagation 

distance.  For distances z much smaller than the Rayleigh range, we can approximate 

Eq. (6.2.21) by the expression 
 

 Um (ρ,ϕ, z) ≈  A
i3|m| 2 π

2|m|
 Γ |m |

2 + 1
2( ) 

k 

2z 

⎡ 
⎣ 

⎤ 
⎦ 

|m|
2

ρ|m|
 eimϕ  ,        ρ → 0,  z << zr( ) .  

   (6.2.22) 
 

Hence, near the z-axis, the closer one approaches the plane z = 0+ , the more rapidly 

the field increases radially from zero.  This is to be expected since, in the limit 

, the field must be non-zero on the z-axis [see Eq. (6.2.1)]. z → 0+

 Figures 6-4 and 6-5 depict the behavior of the beam Um (ρ,ϕ, z) and of the 

modifying function Mm(ρ,ϕ,z)  in the half-space z > 0 for m = 1 and m = 2.  For 

comparison, an ordinary Gaussian beam U0(ρ,ϕ, z) is also shown in these figures.  

As we would anticipate from our preceding discussion, the width of the hole in the 

center of the beams U1(ρ,ϕ, z) and U (2 ρ,ϕ,z ) increases with increasing z. 
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 There are two somewhat surprising aspects of Figs. 6-4 and 6-5:  (i) that for 

propagation distances much smaller than the Rayleigh range the amplitudes of 

U1(ρ,ϕ, z) and of U2(ρ,ϕ,z ) do change considerably on propagation, even though 

the amplitude of an ordinary Gaussian beam is nearly invariant over such distances 

and (ii) that there are high frequency radial oscillations present in U1(ρ,ϕ,z)  and 

U2(ρ,ϕ, z)  for z = 0.005zr  and z = 0.05zr .  These oscillations become even more 

pronounced for larger m, but they disappear almost completely once the propagation 

distance is of the order of the Rayleigh range.  Although the analysis here applies to 

the specific case of a spiral phase plate illuminated by a Gaussian beam, we would 

expect to observe similar effects for illumination by an arbitrary vortex-free coherent 

beam. 
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CHAPTER 7 
 

SUMMARY 

 

 

 The primary objective of this thesis was to study the effects of diffraction of 

light in the near zone of apertures in thin opaque screens, with dimensions 

comparable to the wavelength.  For this purpose, in addition to making use of 

standard techniques, several new analytical and numerical tools were developed 

specifically for examining the near field. 

 In Chapter 2, it was shown that for a scalar field near a point in space where 

the amplitude has a local extremum the surfaces of constant phase are relatively flat.  

Furthermore, if the extremum is a maximum, these surfaces are spaced further apart 

than the corresponding surfaces for a plane wave, whereas if it is a minimum, they are 

spaced closer together than those for a plane wave.  In Chapter 4, this type of phase 

behavior was demonstrated explicitly for the near-field of a slit in a perfectly 

conducting plane.  However, these properties apply to any scalar field in free space 

and, therefore, they can applied to understand various phase phenomena that occur in 

the vicinity of extrema of the amplitude, such as the phase anomaly present near 

focus. 

 In order to understand the propagation of a field in the near zone, the 

contributions of homogeneous and of evanescent waves to the total field were 

examined in Chapter 3 for the case of a two-dimensional scalar field.  Several exact 

techniques for calculating these two contributions were discussed and approximate 
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relations were derived for the near field.  The concepts of total homogeneous 

intensity and total evanescent intensity were introduced as convenient measures of 

the relative importance of the two contributions.  As an example, the diffraction of a 

plane wave by a slit was examined with the use of the approximate boundary 

conditions of the Rayleigh-Sommerfeld theory of the first kind.  Even though these 

boundary conditions provide a poor approximation to the exact near field, they can be 

used to obtain insight into the behavior of the homogeneous and the evanescent 

contributions on propagation.  As one would expect, near-zone modifications of field 

are dominated by the decay of the evanescent contribution, with only relatively small 

changes of the homogeneous contribution. 

 In Chapter 4, the finite-difference time-domain (FD-TD) method was used to 

reexamine the slit diffraction problem rigorously for the case of a thin perfectly 

conducting screen, without making use of any approximate boundary conditions.  The 

near-fields for both E and H-polarizations were considered in detail.  A comparison 

of the boundary fields obtained from the FD-TD method with the predictions of the 

Rayleigh-Sommerfeld theory of the first kind and of the Rayleigh-Sommerfeld theory 

of the second kind showed that neither approximate theory gives an accurate 

description of the near field.  The discrepancy between the exact solution and the 

predictions of the approximate theories decreases, however, with increasing 

propagation distance.  Futhermore, it was shown that, by modifying the boundary 

values of the Rayleigh-Sommerfeld theories, it is possible to obtain two new theories 

of diffraction that provide a better approximation to the near field.  One of these new 

theories yields a reasonable approximation to the electric field for E-polarization and 

the other to the magnetic field for H-polarization.  Generalizations of the new 

approximate theories to arbitrary aperture shapes were discussed in Chapter 5.  

Because the new theories are more difficult to employ than the usual approximate 
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theories, further work is still needed to determine whether the additional computation 

efforts required by the new theories are worthwhile. 

 An iterative Fourier-based algorithm for treating diffraction by an aperture of 

arbitrary shape in a thin opaque screen was proposed in chapter 5.  This new 

algorithm, which is based on the angular spectrum representation, can be 

implemented with the use of fast Fourier transforms for scalar fields incident upon 

apertures in Dirichlet-type or Neumann-type screens and for electromagnetic fields 

incident upon apertures in perfectly conducting screens.  For these situations, the 

algorithm appears to be much more efficient than the FD-TD method.  Preliminary 

results for the case of slit diffraction indicate that the algorithm converges to the exact 

solution very rapidly. 

 In Chapter 6, in order to show that an optical vortex can dramatically affect 

the diffraction of a three-dimensional field over small propagation distances, the field 

emerging from a spiral phase plate illuminated by a Gaussian beam was examined.  

For this example, a closed-form solution for the field behind the phase plate was 

found in terms of modified Bessel functions with complex argument.  It was shown 

that there are appreciably changes to the field for propagation distances much smaller 

than the Rayleigh range.   Hence, even though, strictly speaking, the propagation 

distances in question are not in the near zone because they are larger than the 

wavelength, they are considerably smaller than minimum distance usually associated 

with observable diffraction effects in beams.  One would expect to see similar 

behavior in other situations in which an optical vortex is imposed on a previously 

vortex-free field. 

 In conclusion, it should be stressed that, in general, for apertures with 

dimensions comparable to the wavelength or smaller, near-field diffraction is difficult 

to analyze because the usual approximations used in physical optics for the 
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propagator (the Green's function) and for the boundary values of the field are not 

applicable.  Both the boundary value problem, which requires the determination of 

the boundary value of the field immediately behind the screen, and the propagation 

problem, which requires the determination of the field at some distance from the 

screen from this boundary field, must be treated carefully. 



  138 

 

 

APPENDIX A 
 

SOME REMARKS ON THE POYNTING 

VECTOR AND ENERGY DENSITY  

 

 

 In Section 2.1.7, it was shown that, for a complex scalar field U = A eiφ , the 

(real) energy flux vector F is related to the amplitude A and the phase φ by the simple 

expression 
 
   , (A.1) F =  2ωα A2∇φ
 

where α is a real, positive constant.  In this Appendix, we derive the analogous 

relation for an electromagnetic field and show that it reduces to the form of Eq. (A.1) 

when the field is linearly polarized. 

 The (real) time-averaged Poynting vector associated with a monochromatic 

electromagnetic field with electric field E and magnetic field H is given by  
 

  

S =  c
8π

 Re{E× H∗}

=  −
c

8πk
 Im{E × (∇ × E∗)} 

=  −
c

8πk
 Im{H × (∇ × H∗)}

  (A.2) 

 

and satisfies the conservation law 

 
  ∇• S = 0  . (A.3) 
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Let us express the electric field E in terms of its magnitude E and a (complex) 

polarization unit vector u , e

 
  E = E  ue  , (A.4) 
 
  E =  E  ,     ue • ue

∗  =  1 . (A.5) 

Then, 
 

  

E × (∇ × E∗) =  E  ue × [∇ × (E  ue
∗)]

=  E  ue × (E ∇ × ue
∗ +  ∇E × ue

∗)

=  E2ue × (∇ × ue
∗) +  E [(ue • ue

∗) ∇E –  (ue • ∇E)  ue
∗]

=  E2ue × (∇ × ue
∗) +  E ∇E –  E ue

∗(ue • ∇E)

 

   (A.6) 
 
and, because ∇  , • E(r) = 0
 
  ue • ∇E = − E ∇• ue  . (A.7) 

 

 By making use of Eqs. (A.2), (A.6) and (A.7), we readily obtain the desired 

expression for the Poynting vector, 
 

  S =  −
c
k

 we  Im{ue × (∇ × ue
∗) +  ue

∗(∇• ue )} , (A.8) 

where  

  we =  
1

16π
 E2  (A.9) 

 

is the electric energy density.  Equation (A.8) should be compared with Eq. (A.1).  

Similarly to Eq. (A.1), where the direction of energy flux vector F depends only on 
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the phase φ, in Eq. (A.8) the direction of the Poynting vector S depends only on the 

polarization unit vector u . e

 We next consider the case when the electric field is linearly polarized.  

Although this case is discussed extensively in Ref. 1, we reexamine it here to show 

that Eq. (A.8) does yield the correct result.   

 For a linearly polarized electric field, the complex unit polarization vector u  

may be written in terms of a real polarization unit vector n  and a real phase 

e

e φe  as 

 
  ue  =  ne eiφe  . (A.10) 
 
Hence 
 

  

ue × (∇ × ue
∗) =  eiφe  ne × [∇ × (ne e−iφe )]

=  ne × (∇ × ne) −  ine × (∇φe × ne )

=  ne × (∇ × ne) −  i∇φe +  ine(ne • ∇φe ) ,

 (A.11) 

 

  
ue
∗(∇• ue ) =  ne e−iφe[∇ • (ne eiφe )]

=  ne (∇• ne ) +  ine(ne • ∇φe ) 
 (A.12) 

 
and Eq. (A.8) becomes 
 

  S =  
c
k

 we [∇φe −  2 ne(ne • ∇φe)] . (A.13) 

 

If we now substitute from Eq. (A.10) into Eq. (A.7), we obtain the relation 
 

  ne • ∇E = − E ∇• ne − iE ne • ∇φe  . (A.14) 

 

By taking the imaginary part of this expression, 
 

  ne • ∇φe = 0 , (A.15) 
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we find that the polarization unit vector n  is perpendicular to the surfaces of 

constant 

e

φe .  Equation (A.13) then reduces to the form of Eq. (A.1),  

 

  S =  
c
k

 we∇φe  , (A.16) 

 

in agreement with Eq. (3.22) of Ref. 1. 

 It should be mentioned that, by writing the magnetic field H in a form 

analogous to Eq. (A.4), 
 

  H =  H um  ,     H =  H  ,     um • um
∗  =  1, (A.17) 

 

we can obtain an expression for the Poynting vector that is equivalent to Eq. (A.8), 

but which is in terms of the magnetic energy density w  and the (complex) 

polarization unit vector u : 

m

m

 

  S =  –
c
k

 wm  Im{um × (∇ ×  um
∗ ) +  um

∗ (∇• um)}  , (A.18) 

 

  wm =  
1

16π
 H 2  . (A.19) 
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APPENDIX B 
 

DERIVATION OF EQ. (3.3.3) 

 

 

 In this Appendix, we derive the series expansion (3.3.3) of the integral (3.3.2), 

i.e., of 
 

  T (x, z) =  eikx cosψ  eikz sinψ  dψ
0

π

∫  . (B.1) 

 

By making use of Eqs. (9.1.42)-(9.1.45) of Ref. 1, we can write the two exponentials 

in the integrand of Eq. (B.1) in terms of a series of Bessel functions of the first kind 

and integer order as 
 

 

eikzsin ψ  =  J0(kz) +  2 J2m (kz)
m=1

∞

∑  cos(2mψ )

+  2i J2m+1(kz)
m=0

∞

∑  sin[(2m +1)ψ ] ,

 
  (B.2) 
 

 

eikx cosψ  =  J0(kx) +  2 (−1)n J2n(kx)
n=1

∞

∑  cos(2nψ )

+  2i (−1)n J2n+1(kx )
n=0

∞

∑  cos[(2n +1)ψ ] .

 

  (B.3) 
 



  143 

When these two expansions are substituted into Eq. (B.1), there are 9 different 

integrals that need to be evaluated, all of which are very simple.  The results are 
 

 dψ
0

 π

∫  =  π  ,  (B.4a) 

 

 cos(2mψ ) dψ
0

 π

∫  =  cos(2nψ ) dψ
0

 π

∫  =  0 ,      (m ≥1,  n ≥1)  , (B.4b) 

 

 sin[(2m +1)ψ ] dψ
0

 π

∫  =  
2

2m +1
 ,     (m ≥ 0) , (B.4c) 

 

 cos[(2m +1)ψ ] dψ
0

 π

∫  =  0 ,      (n ≥ 0) , (B.4d) 

 

 cos(2mψ ) cos(2nψ ) dψ
0

 π

∫  =  
π
2

 δnm ,      (m ≥ 1, n ≥1) , (B.4e) 

 

 cos(2mψ ) cos[(2n +1)ψ ] dψ
0

 π

∫  =  0 ,      (m ≥1, n ≥ 0) , (B.4f) 

 

 sin[(2m +1)ψ ] cos(2nψ ) dψ
0

 π

∫  =  
2 (2m +1)

(2m +1)2 − 4n2  ,      (m ≥ 0, n ≥ 1) , 

   (B.4g) 
 

 sin[(2m +1)ψ ] cos[(2n +1)ψ ] dψ
0

 π

∫  =  0 ,      (m ≥ 0,  n ≥ 0)  . (B.4h) 

 

In Eq. (B.4e) δnm  denotes the Kronecker delta symbol.  The resulting expression for 

T (x, z) is then 
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T (x, z) =  π J0(kx) J0(kz) +  4i J0(kx) 1
2m +1

 J2m+1(kz)
m= 0

∞

∑

+  2π (−1)m J2m(kx ) J2m(kz)
m=1

∞

∑

+  8i  (−1)n 2m +1
(2m +1)2 − 4n2  J2n (kx) J2m+1(kz)

n=1

∞

∑
m=0

∞

∑  .

 

  (B.5) 
 

 We can simplify the first three terms of Eq. (B.5) with the help of the 

relations2,3 
 

  J0 k x 2 +  z2⎛ 
⎝ 

⎞ 
⎠  =  J0(kx ) J0(kz) +  2 (−1)m J2m(kx) J2m(kz)

m=1

∞

∑   

   (B.6) 
and 

  H0(kz) =  
1

2m + 1
 J2m+1(kz)

m=0

∞

∑  , (B.7) 

 
where H  is a Struve function of zeroth order.  Equation (B.5) then becomes 0

 

 

T (x, z) =  π J0 k x2 +  z2⎛ 
⎝ 

⎞ 
⎠  +  πi J0(kx) H0(kz)

+  8i  (−1)n 2m +1
(2m +1)2 − 4n2  J2n (kx) J2m+1(kz)

n=1

∞

∑
m=0

∞

∑  ,
 

   (B.8) 
 
which is Eq. (3.3.3) of Chapter 3. 
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APPENDIX C 
 

DERIVATION OF EQ. (3.3.14a) 

 

 

 Here we derive Eq. (3.3.14a) of Chapter 3 from the expression [see Eqs.  

(3.3.12) and (3.3.13)] 
 

  

  

H h (x,z ) =  
k

2π
 
in

n!
n=0

∞

∑  (kz)n eikuxx  (1− ux
2 )n 2

 dux
−1

1

∫  . (C.1) 

 

We can evaluate the integrations with respect to ux  using the following integral 

representation for Bessel functions of the first kind:1 

 

  Jν (β ) =  
(β 2)ν

Γ ν + 1
2( ) Γ 1

2( ) eiβt  1 − t2( )ν− 1
2  dt

−1

1

∫  ,      Reν > − 1
2( ) , 

   (C.2) 
 
where Γ is the gamma function.  Equation (C.1) then becomes 
 

  
  
H h (x,z ) =  

k
2π

 
in

n!
n=0

∞

∑  (kz)n  Γ n
2 +1( ) Γ 1

2( ) J(n+1) 2(kx )

(kx 2)(n+1) 2  . (C.3) 

 

Let us examine the sum over even n and odd n separately and express the summation 

symbolically as 
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n=0

∞

∑ =
n=0

(even)

∞

∑ +
n=1

(odd )

∞

∑ . (C.4) 

 
 For the summation over odd n, if we use the relations 
 
  Γ 1

2( ) =  π  , (C.5) 
 
  Γ n

2 +1( ) =  
n!!

2n 2
 21 2  Γ 1

2( ) , (C.6) 

 

where , and make the change of summation indices 

, we obtain 

n!!= n(n − 2)(n − 4).....(5)(3)(1)

n = 2m −1
 

  
n=1

(odd )

∞

∑ =  − iπ  
(−1)m

(m −1)!  2m−1
m=1

∞

∑  (kz)2m−1 
Jm(kx)
(kx)m  . (C.7) 

 

We can resum this expression explicitly using the multiplication theorem2 
 

  J1(sβ ) =  s  (−1)p
 
(s2 −  1)p

 (β 2)p

p! 
p=0

∞

∑  J p+1(sβ ) , (C.8) 

 
with β = kx , s = 1+ z2 x2( ) and p = m −1.  Equation (C.7) then reduces to 

 

  
n=1

(odd )

∞

∑ =  
iπ z

x2 +  z2
 J1 k x2 +  z2⎛ 

⎝ 
⎞ 
⎠  . (C.9) 

 

 On the other hand, for even n, if we use Eqs. (C.5) and 
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  Γ n
2 +1( ) =  (n 2)!  (C.10) 

 
and make the change of indices n = 2m , we have 
 

  
n=0

(even)

∞

∑ =  
2π
kx

  (−1)m
 
2m

 m!
(2m)!  

m=0

∞

∑  (kz)2m  
Jm+1 2(kx)

(kx)m  (C.11) 

 
or, in terms of spherical Bessel functions jm(β ) ≡ π (2β ) Jm+1 2(β ) , 

 

  
n=0

(even)

∞

∑ =  2  (−1)m
 
2m

 m!
(2m)!  

m=0

∞

∑  (kz)2m  
jm(kx )
(kx)m  . (C.12) 

 

 After substituting from Eqs. (C.9) and (C.12) into Eq. (C.3), we obtain Eq. 

(3.3.14a) of Chapter 3 for the kernel ,  H h (x,z )

 

 
  
H h (x,z ) =  

ikz

2 x2 +  z2
 J1 k x2 +  z2⎛ 

⎝ 
⎞ 
⎠  +  

k
π

 (−1)m
 
2m

 m!
(2m)!

 (kz)m jm (kx)
(kx)m

m=0

∞

∑  . 

  (C.13) 
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APPENDIX D 
 

DERIVATION OF ASYMPTOTIC SERIES (3.5.9) 

FOR THE TOTAL EVANESCENT INTENSITY 

 

 

 To understand the decay of the total evanescent intensity Itot
(i) (z ) for the 

example considered in Section 3.5, we need to derive the first few terms in the 

asymptotic expansion, for large values of kz, of Eq. (3.5.4b), i.e., of 
 

  Itot
(i) (z ) =  

4Itot (0)
πkd

  

sin2 ux kd 2( )
ux

2  e–2kz ux
2 – 1

1

∞

∫  dux  . (D.1) 

 

If we make the change of variables s = ux
2 −1, we can rewrite this equation in the 

form 

 

  Itot
(i) (z ) =  

4Itot (0)
πkd

  

sin2[kd(1 + s2 )1 2 2]
(1+ s2)3 2  e–2kzs

0

∞

∫  s ds  . (D.2) 

 

 When kz >> 1 there is an appreciable contribution to the above integral only 

for s << 1.  We can then make the following approximations: 

 

  
1

(1+ s2)3 2  ≈  1 −  
3
2

 s2 +  
15
8

 s4  , (D.3) 
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sin2[kd(1 + s2)1 2 2] ≈  sin2 kd 1
2

+ 1
4

s2⎛ 
⎝ 

⎞ 
⎠ 

⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 

≈  
1
2

 −  
1
2

cos(kd)  cos(kds2 2) −  sin(kd) sin(kds2 2){ }

≈  
1
2

 −  
1
2

cos(kd)  1 −
(kds2 2)2

2
⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥  −  sin(kd) 
kds2

2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

≈  sin2(kd 2) +  
kd
4

 sin(kd) s2 +  
kd
4

⎛ 
⎝ 

⎞ 
⎠ 

2
cos(kd)  s4 ,

 

  (D.3) 
 

 

sin2[kd(s2 +1)1 2 2]
(s2 +1)3 2 ≈  sin2(kd 2) +  kd

4
 sin(kd) −  3

2
 sin2(kd 2)⎡ 

⎣ 
⎤ 
⎦ 

 s2

+   
kd
4

⎛ 
⎝ 

⎞ 
⎠ 

2
cos(kd) −  

3kd
8

 sin(kd) +  
15
8

 sin2(kd 2)
⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥  s
4 .

 

   (D.4) 
 

 After substituting Eq. (D.4) into Eq. (D.2) and performing the integrations 

over s using the relation 
 

  e–2kzs sq  ds
0

∞

∫  =  
q!

(2kz)q+1  , (D.5) 

 
we obtain Eq. (3.5.9) of Chapter 3, viz., 
 

 

Itot
(i) (z ) ~  4Itot (0)

πkd
 

1!
(2kz)2

⎧ 
⎨ 
⎩ 

sin2 kd 2( ) +  3!
(2kz)4  

kd
4

 sin(kd) −  3
2

 sin2(kd 2)⎡ 
⎣ 

⎤ 
⎦ 

+  
5!

(2kz)6  
kd
4

⎛ 
⎝ 

⎞ 
⎠ 

2
cos(kd) −  

3kd
8

 sin(kd) +  
15
8

 sin2(kd 2)
⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 
⎫ 
⎬ 
⎭ 

 ,

 

  (D.6) 
 
which contains the first three terms in the asymptotic series of Itot

(i) (z ) for large kz. 
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APPENDIX E 
 

DESCRIPTION OF THE FD-TD NUMERICAL METHOD 

 

 

 In this Appendix, we describe the finite-difference time-domain (FD-TD) 

technique that we implemented to obtain the numerical results presented in Chapter 4.   

Although the specific FD-TD method we used is rather unsophisticated, it does 

provide very accurate results.  Because there exists extensive literature on FD-TD,1-3 

we shall keep our discussion rather brief. 

 Since both E and H-polarizations can be completely described by a scalar 

field that satisfies the free-space Helmholtz equation, in the time domain the two 

polarizations can be treated by applying finite differences to the free-space wave 

equation, 
 

  ∇2
 −  

1
c2

∂ 2

∂ t2
⎛ 

⎝ 
⎜ ⎞ 

⎠ 
⎟  V (x, z, t) =  0 . (E.1) 

 

For a rectangular grid of points (see Fig. E-1), the discritized wave equation for the 

scalar field V(x,z, t) can then be expressed in the form 
 

  V  , (x,z, t + ∆t) =  c2 (∆t)2 ∇2V (x, z,t) +  2V (x, z,t) –  V(x, z, t – ∆t)
   (E.2) 
 

where the second-order partial derivatives with respect to x and z are given by the 

formulas 
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∆x

∆z z = 0

x = 0

x = − d/2x =− d/2

x = d/2

Z

X 

 
Figure E-1  Numerical grid used in the FD-TD calculations for the diffraction of a 
plane wave by a slit.  The grid points are at the intersections of the dotted lines. 

 

 
 

  
∂2V (x, z, t)

∂ x2  =  
V (x + ∆x,z, t) –  2V(x, z, t) +  V(x – ∆x, z, t)

(∆x)2  , (E.3) 

 

  
∂2V (x, z, t)

∂ z2  =  
V (x,z + ∆z,t) –  2V(x,z, t) +  V(x,z – ∆z,t)

(∆z)2  . (E.4) 

 

Here ∆x << λ  and ∆z << λ  are small increments along x and z directions, 

respectively, and ∆  is a small increment of time.  To obtain stable results, ∆  must 

satisfy the causality inequality 

t t

 
  ∆t <  

1

c 1 (∆x)2 +  1 (∆z)2
 . (E.5) 
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From Eqs. (E.2)-(E.4), V(x,z, t + ∆t) can be computed from V(x,z, t) and 

V(x,z, t – ∆t).  This procedure can be invoked repeatedly to determine the field 

V(x,z,T ) at some time of interest T = to + n(∆t) , n being an integer, from knowledge 

of V(x,z, to)  and V(x,z, to – ∆t)  at some initial time t . o

   The difference between the treatment of the two polarizations is in the 

boundary conditions for V(x,z, t) on the surface of the perfect conductor.  For E-

polarization, since V represents the electric field Ey , V must satisfy the condition 

 

  V(x,0, t) =  0 for  x  >  
d
2

 , (E.6) 

 
and for H-polarization, since V represents the magnetic field Hy , it must satisfy 

 

 V(x,−∆z,t) =  V(x,0, t)    and   V(x,∆z, t) =  V(x,2∆z, t) for  x  >  
d
2

 . 

  (E.7) 
 

Equations (E.6) and (E.7) ensure that the tangential electric field is zero on the 

conductor. 

 The above scheme was applied to the total field with the use of three two-

dimensional arrays to store V(x,z, t + ∆t), V(x,z, t) and V(x,z, t – ∆t) at the grid 

points.  The slit plane was placed near the center of the grid and the incident plane 

wave was taken to propagate into the grid from the left edge.  To enforce the radiation 

condition at the edges of grid in the half-space z > 0, 2nd order Engquist-Majda 

absorbing edge boundary conditions were used together with 1st order corner 

boundary conditions.4,5,1  However, when such boundary conditions were applied in 

the half-space z < 0, they caused a significant disturbance to the incident plane wave.  

To eliminate this disturbance, the Neumann boundary condition ∂V(x,z, t) ∂ x = 0  
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was used in this half-space along the edges of the grid parallel to the z-axis, but it was 

then necessary to restrict the total computation time T so that no artifacts from grid-

edge reflections would be present in the region of interest*.  A more efficient 

approach would have been to use a scattered field FD-TD formulation to solve the 

complementary strip diffraction problem.  The results for slit diffraction could then 

have been obtained with the help of Babinet's principle. 

 Table E-1 contains the computation parameters that correspond to the 

numerical results presented in Chapter 4.  The accuracy of these results was checked 

by performing additional calculations with longer computation times and finer grids.  

Throughout the region  of interest, i.e., the region shown in the color images of 

Chapter 4, the more accurate results differed from those in Chapter 4 by at most 4% 

in amplitude and usually by 1 to 2%. 

 
Table E-1  Values of Parameters Used in FD-TD Computations 

 

 Width Grid Size  Grid Spacing Total Time  Time Spacing 
 

 d X  Z ∆x  ∆z T ∆t 
 

 

 ∞ 
 (Half-Plane) 6 λ 6 λ 0.013 λ 0.0029 λ 7 periods 0.0018 periods 
 
 

 0.2 λ 6 λ 6 λ 0.008 λ 0.0033 λ 7 periods 0.002 periods 
 
 

 0.5 λ 6 λ 6 λ 0.02 λ 0.0033 λ 7 periods 0.002 periods 
 
 

 1.0 λ 6 λ 6 λ 0.02 λ 0.0033 λ 7 periods 0.002 periods 
 
 

 1.5λ 8 λ 8 λ 0.02 λ 0.005 λ 9 periods 0.003 periods 
 
 

 2.0λ 8 λ 8 λ 0.02 λ 0.005 λ 9 periods 0.0036 periods 
 
 

 5.0λ 25 λ 20 λ 0.05 λ 0.0067 λ 24 periods 0.0048 periods 
 

                                                                                                                                           
* The total time T was kept sufficiently large for a steady state to be reached. 



  155 

REFERENCES 

1. W. C. Chew, Waves and Fields in Inhomogeneous Media (Van Nostrand 
Reinhold, New York, 1990), pgs. 235-269. 

2. K. S. Kunz and R. Luebbers, The Finite Difference Time Domain Method for 
Electromagnetics (CRC Press, Ann Arbor, Michigan,1993). 

3. A. Taflove and K. R. Umashankar, “Review of FD-TD numerical modeling of 
electromagnetic  wave scattering and radar cross section,” Proc. IEEE 77, 682-
699 (1989). 

4. B. Engquist and A. Majda, “Absorbing boundary conditions for the numerical 
simulation of waves,” Math. Comput. 31, 629-651 (1977). 

5. B. Engquist and A. Majda, “Radiation boundary conditions for acoustic and 
elastic wave calculations,” Comm. Pure Appl. Math. 32, 313-357 (1979). 

 


	Chapter 3
	Appendix C




