
Homogeneous and evanescent
contributions in scalar near-field diffraction

Marek W. Kowarz

The contributions of homogeneous and evanescent waves to two-dimensional near-field diffraction
patterns of scalar optical fields are examined in detail. The total plane-integrated intensities of the two
contributions are introduced as convenient measures of their relative importance. As an example, the
diffraction of a plane wave by a slit is considered.
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1. Introduction

Important recent developments in near-field micros-
copy, near-field spectroscopy, and high-density optical
data storage have prompted considerable interest in
near-field optics,1–4 in which both the spatial features
of the objects and the propagation distances can be
much smaller than a wavelength. Unlike conven-
tional optical systems, whose resolution is fundamen-
tally limited by the wavelength, near-field systems
can achieve subwavelength resolution by interaction
with the evanescent near field, which carries informa-
tion about spatial periods in the structure of an object
that are smaller than a wavelength 1see Fig. 12.
In this paper we elucidate the effects of diffraction

in the near field by examining the separate contribu-
tions of homogeneous and evanescent 1inhomoge-
neous2 waves to two-dimensional 12-D2 near-field dif-
fraction patterns of scalar fields. Some discussion of
near-field diffraction based on such a decomposition
can also be found in papers by Harvey5 and by
Massey.6 The consequences of neglecting evanescent
waves in certain near-field distributions have been
discussed by Carter.7,8 For the sake of mathematical
simplicity, and also because in the 2-D case the exact
electromagnetic diffraction problem can be described
by a scalar theory,9 we restrict our analysis to 2-D
diffraction.
First, in Section 2 some basic relations for calculat-
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ing the homogeneous and the evanescent contribu-
tions to an arbitrary field are discussed. Then in
Section 3 the concepts of total homogeneous intensity
and total evanescent intensity are introduced. Fi-
nally, in Section 4 the behavior of the two contribu-
tions is illustrated for the case when a plane wave is
diffracted by a slit in an opaque screen.

2. Homogeneous and Evanescent Contributions

Let us consider a 2-D monochromatic scalar optical
field V1x, z, t2 5 U1x, z2exp12ivt2 1v being the temporal
frequency2. U1x, z2 obeys the 2-D Helmholtz equa-
tion,

1=2 1 k22U1x, z2 5 0, 12.12

where =2 ; ≠2@≠x2 1 ≠2@≠z2, k 5 v@c 5 2p@l is the
free-space wave number, c is the speed of light in
vacuum, and l is the wavelength.
We are interested in free-space propagation of the

field U1x, z2 from the plane z 5 0 into the half-space
z . 0. We shall assume that all sources, scatterers,
diffracting apertures, etc., are located in the half-
space z, 0. Using the angular spectrum representa-
tion,10–15 we can write the field U1x, z2 for z $ 0 as the
sum of a homogeneous contribution Uh1x, z2 and an
evanescent 1inhomogeneous2 contributionUi1x, z2,

U1x, z2 5 Uh1x, z2 1 Ui1x, z2. 12.22

Uh1x, z2 is a superposition of homogeneous plane
waves that propagate into the half-space z . 0,

Uh1x, z25 e
0ux0#1

a1ux2exp1ikuxx2exp3ikz112ux
221@24dux,

12.3a2
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whereasUi1x, z2 is a superposition of evanescent 1inho-
mogeneous2 plane waves that decay exponentially
along the positive z direction,

Ui1x, z25 e
0ux0.1

a1ux2exp1ikuxx2exp32kz1ux
2 2121@24dux.

12.3b2

It should be noted that the homogeneous and the
evanescent contributions each separately satisfy the
Helmholtz equation.
The spectral amplitude function a1ux2 appearing in

Eqs. 12.32 is the spatial Fourier transform of the field
distributionU1x, 02 in the plane z 5 0:

a1ux2 5
k

2p e
2`

`

U1x8, 02exp12ikuxx82dx8. 12.42

For the near-field geometries of interest in this paper
we can restrict our analysis to well-behaved functions
U1x, 02 that are of finite support, i.e., well-behaved
functions that vanish outside some finite x range.
U1x, 02 is then square integrable; furthermore, a1ux2 is
the boundary value on the real ux axis of an entire
analytic function.16
Using relation 12.42, we may rewrite Eqs. 12.32 as

Uh1x, z2 5 e
2`

`

*h1x 2 x8, z2U1x8, 02dx8, 12.5a2

Ui1x, z2 5 e
2`

`

*i1x 2 x8, z2U1x8, 02dx8, 12.5b2

Fig. 1. Diagrams of 1a2 a conventional optical microscope and 1b2 a
collection-mode near-field scanning optical microscope.
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with the kernels * h1x, z2 and * i1x, z2 given by the
formulas

* h1x, z2 ;
k

p e
0

1

cos1kuxx2exp3ikz11 2 ux
221@24dux

12.6a2

* i1x, z2 ;
k

p e
1

`

cos1kuxx2exp32kz1ux
2 2 121@24dux.

12.6b2

It can readily be shown that

* 1x, z2 ; * h1x, z2 1 * i1x, z2

5
ikz

21x2 1 z221@2
H1

112 3k1x2 1 z221@24, 12.72

where H1
112 is a Hankel function of the first kind and

first order. Expression 12.72 is the usual 2-D free-
space wave propagator.17
If we let z 5 0 in Eqs. 12.62, the integrations with

respect to ux can be performed at once, yielding

* h1x, 02 5
1

p

sin1kx2

x
, 12.8a2

* i1x, 02 5 d1x2 2
1

p

sin1kx2

x
, 12.8b2

where d1x2 is theDirac delta function. After substitut-
ing these relations into Eqs. 12.52, we find that

Uh1x, 02 5
1

p e
2`

` sin3k1x 2 x824

1x 2 x82
U1x8, 02dx8, 12.9a2

Ui1x, 02 5 U1x, 02 2
1

p e
2`

` sin3k1x 2 x824

1x 2 x82
U1x8, 02dx8.

12.9b2

Because the location of the plane z 5 0 is essentially
arbitrary, analogous expressions must also apply to

Fig. 2. Slit of width d in an opaque screen, illuminated by a
normally incident plane wave.



Fig. 3. Near-field diffraction patterns showing 0U1x, z2 0 , 0Uh1x, z2 0, andUi1x, z2 for a slit of width d 5 0.2l with the choice K 5 l@d 5 5.
any plane z 5 const. $ 0:

Uh1x, z2 5
1

p e
2`

` sin3k1x 2 x824

1x 2 x82
U1x8, z2dx8, 12.10a2

Ui1x, z2 5 U1x, z2 2
1

p e
2`

` sin3k1x 2 x824

1x 2 x82
U1x8, z2dx8.

12.10b2

We see from the preceding discussion that there are
three alternative pairs of expressions that can be used
to determine the homogeneous and the evanescent
contributions to the field in any plane z 5 const. $ 0:
Eqs. 12.32, Eqs. 12.52, and Eqs. 12.102. The first pair,
Eqs. 12.32, expresses Uh1x, z2 and Ui1x, z2 in terms of
the spectral amplitude function, a1ux2, which itself
can be computed by taking a Fourier transform of the
field distribution U1x, 02 in the plane z 5 0 3see Eq.
12.424. In the near field these equations are well
suited for numerical implementation because all the
integrations can be performed with fast Fourier
transforms.
The second pair of equations, Eqs. 12.52, deter-

minesUh1x, z2 andUi1x, z2 directly from the field distri-
bution U1x, 02 in the plane z 5 0. However, for
arbitrary z the kernels * h1x, z2 and * i1x, z2, given by
Eqs. 12.62, cannot readily be expressed in closed form.
Last, Eqs. 12.102 can be used to obtain Uh1x, z2 and

Ui1x, z2 in any plane z 5 const. $ 0 from knowledge of
the field distributionU1x, z2 in that plane. IfU1x, z2 is
not known, but eitherUh1x, z2 orUi1x, z2 is known, Eqs.
12.10a2 and 12.10b2 are of the form of Fredholm integral
equations of the first and the second kind, respec-
tively, for the unknownU1x, z2. The integral operator
that appears in Eq. 12.10a2 has been studied exten-
sively and occurs in a variety of contexts.18–21

3. Total Intensities

We shall now introduce the concepts of total 1plane-
integrated2 homogeneous intensity and total 1plane-
integrated2 evanescent intensity as rough convenient
measures of the relative importance of the contribu-
tions Uh1x, z2 and Ui1x, z2 to the field distribution
U1x, z2.
Using Eq. 12.22, we can write the intensity of the

field I1x, z2 ; 0U1x, z2 02 in the form

I1x, z2 5 Ih1x, z2 1 Ii1x, z2 1 Ihi1x, z2, 13.12

where

Ih1x, z2 ; 0Uh1x, z2 02, 13.2a2

Ii1x, z2 ; 0Ui1x, z2 02, 13.2b2

are the intensities of the homogeneous and of the
evanescent contributions, respectively, and the term

Ihi1x, z2 ; Uh*1x, z2Ui1x, z2 1 Uh1x, z2Ui*1x, z2 13.2c2

arises from interference between the homogeneous
and the evanescent contributions. We now define
10 June 1995 @ Vol. 34, No. 17 @ APPLIED OPTICS 3057



Fig. 4. Same as Fig. 3 but for width d 5 1l and K 5 l@d 5 1.
the total intensity Itot1z2, the total homogeneous inten-
sity Itot

1h2 1z2, and the total evanescent 1inhomogeneous2
intensity Itot

1i2 1z2 by the expressions

Itot1z2 ; e
2`

`

I1x, z2dx, 13.32

Itot
1h2 1z2 ; e

2`

`

Ih1x, z2dx, 13.4a2

Itot
1i2 1z2 ; e

2`

`

Ii1x, z2dx, 13.4b2

respectively.
From Eqs. 12.32 and 13.12–13.42 it follows that the

total intensity is just the sum

Itot1z2 5 Itot
1h2 1z2 1 Itot

1i2 1z2, 13.52

where

Itot
1h2 1z2 5

2p

k e
0ux0#1

0a1ux2 02dux, 13.6a2

Itot
1i2 1z2 5

2p

k e
0ux0.1

0a1ux2 02exp322kz1ux
2 2 121@24dux.

13.6b2
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There are only two terms in Eq. 13.52 because the
integrated interference term can be shown to be
identically zero. Furthermore, as is evident from
Eq. 13.6a2, the total homogeneous intensity is con-
served on propagation in the sense that Itot

1h2 1z2 is
independent of z. Hence we may drop the z argu-
ment in Itot

1h2 1z2, and we will do so from now on. The
conservation of total homogeneous intensity on propa-
gation and related conservation laws is discussed in
Refs. 22–25.
By substituting the spectral amplitude function

from Eq. 12.42 into Eqs. 13.62, we can rewrite the total
intensities Itot

1h2 and Itot
1i2 1z2 in terms of the field distribu-

tionU1x, 02 in the plane z 5 0 as

Itot
1h2 5

1

p e
2`

`

dx8 e
2`

`

dx9
sin3k1x8 2 x924

1x8 2 x92

3 U*1x8, 02U1x9, 02, 13.7a2

Itot
1i2 1z25 e

2`

`

dx8 e
2`

`

dx9 * i1x8 2 x9, 2z2U*1x8, 02U1x9, 02,

13.7b2

where the kernel *i1x, z2 is given by Eq. 12.6b2.
Alternatively, using the fact that Itot

1h2 is independent of
z, we can also express Itot

1h2 and Itot
1i2 1z2 in terms of the

field distribution U1x, z2 in an arbitrary plane z 5



Fig. 5. Same as Fig. 3 but for width d 5 5l and K 5 l/d 5 0.2.
const. $ 0, as follows:

Itot
1h2 5

1

p e
2`

`

dx8 e
2`

`

dx9
sin3k1x8 2 x924

1x8 2 x92

3 U*1x8, z2U1x9, z2, 13.8a2

Itot
1i2 1z2 5 e

2`

`

0U1x, z2 02dx 2
1

p e
2`

`

dx8 e
2`

`

dx9

3
sin3k1x8 2 x924

1x8 2 x92
U*1x8, z2U1x9, z2. 13.8b2

Evidently the total intensities Itot1z2, Itot
1h2 , and Itot

1i2 1z2
are useful only if they are finite quantities. In this
connection it should be pointed out that there are
physically realistic field distributions that have infi-
nite total intensity but finite total energy flux.26
Because the field distribution U1x, 02 that we are
considering is square integrable 3see remarks below
Eq. 12.424, Itot102 is finite, and, consequently, so are Itot1z2,
Itot
1h2 , and Itot

1i2 1z2 because, as can easily be shown,

Itot1z2 # Itot102, Itot
1h2 , Itot102, Itot

1i2 1z2 , Itot102.

Instead of using the total intensities Itot
1h2 and Itot

1i2 1z2 as
measures of the relative importance of Uh1x, z2 and
Ui1x, z2, one might consider using the total energy flux
Ftot

1h2 and the total reactive energy Ftot
1i2 1z2 for this

purpose. As discussed in Appendix A, these quanti-
ties can be defined by means of the scalar analog of
the complex Poynting theorem. In terms of the
spectral amplitude function a1ux2, they may be written
as

Ftot
1h2 5 4pva e

0ux0#1

11 2 ux
221@2 0a1ux2 02dux, 13.9a2

Ftot
1i2 1z2 5 4pva e

0ux0.1

1ux
2 2 121@2 0a1ux2 02

3 exp322kz1ux
2 2 121@24dux, 13.9b2

a being a positive constant, as we demonstrate in
Appendix A. Equations 13.9a2 and 13.9b2 should be
comparedwith their counterparts for the total intensi-
ties, Eqs. 13.6a2 and 13.6b2. As expected, we see that
the total energy flux Ftot

1h2 depends only upon the
homogeneous contributionUh1x, z2 and is independent
of the propagation distance z, whereas the total
reactive energy Ftot

1i2 1z2 depends only upon the evanes-
cent contribution Ui1x, z2 and decays with z. How-
ever, because of the multiplicative factor 1ux

2 2 121@2 in
Eq. 13.9b2, the total reactive energy can diverge in
cases when the total evanescent intensity is finite.
In fact, for the example considered in Section 4 one
can show that the total reactive energy does indeed
diverge in the plane z 5 0. For this reason we choose
to use the total intensities Itot

1h2 and Itot
1i2 1z2 rather than

Ftot
1h2 and Ftot

1i2 1z2 in our near-field analysis.
10 June 1995 @ Vol. 34, No. 17 @ APPLIED OPTICS 3059



4. Diffraction by a Slit

The analysis of diffraction of light by an aperture in
an opaque screen can be separated into the treatment
of two distinct problems: the boundary-value prob-
lem and the propagation problem. The boundary-
value problem consists of determining the field imme-
diately behind the screen for a given incident field and
known material properties of the screen, whereas the
propagation problem involves determining the field at
some distance from the screen when the field immedi-
ately behind the screen is known. Because in most
cases it is very difficult to determine the exact bound-
ary value of the field, approximate boundary condi-
tions are often used, such as those given by the
Rayleigh–Sommerfeld theories or the Kirchhoff
theory.27,28
We now consider, as an example, the near-field

diffraction of a plane wave normally incident upon a
slit of width d in an opaque screen 1see Fig. 22, using
approximate boundary conditions. We assume that
directly behind the slit, in the plane z 5 0, the field
may be approximated by the Rayleigh–Sommerfeld
boundary condition of the first kind27,28:

U1x, 02 5 5Uinc1x, 02 for 2d@2 # x # d@2

0 otherwise
, 14.12

where Uinc1x, z2 represents the incident field. For the
case of a normally incident plane wave, Uinc 1x, 02 5
K, where K is a constant. It should be pointed out
that, for the small slit widths of interest here, one
would expect the actual field distribution in the plane
z 5 0, i.e., the solution to the rigorous boundary-value
problem, to be rather different from the field distribu-
tion given by the above boundary condition. Never-
theless, we can still gain some understanding of
propagation in the near field by employing this ap-
proximate boundary condition.

Fig. 6. Total homogeneous intensity I tot
1h2 1which is independent

of z2 and total evanescent intensity Itot
1i2 102 in the plane z 5 0 as

functions of the slit width d. These curves were computed from
Eqs. 14.52 and 14.82.
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Using Eq. 12.42, we find that the spectral amplitude
function associated with boundary condition 14.12 is

a1ux2 5
K

p

sin1uxkd@22

ux
. 14.22

Consequently, according to Eqs. 12.32 and 13.62, the
homogeneous and the evanescent contributions in
any plane z 5 const. $ 0 are

Uh1x, z2 5
K

p e
0ux0#1

sin1uxkd@22

ux
exp1ikuxx2

3 exp3ikz11 2 ux
221@24dux, 14.3a2

Ui1x, z2 5
K

p e
0ux0.1

sin1uxkd@22

ux
exp1ikuxx2

3 exp32kz1ux
2 2 121@24dux, 14.3b2

Fig. 7. Total intensity Itot1z2 5 I tot
1h2 1 I tot

1i2 1z2 computed from Eqs.
14.4b2 and 14.52 as a function of the distance z for various slit widths.

Fig. 8. Total evanescent intensity I tot
1i2 1z2 computed from Eq. 14.4b2

as a function of the distance z for various slit widths.



and the total intensities are

Itot
1h2 5

4Itot102

pkd e
0

1 sin21uxkd@22

ux
2

dux, 14.4a2

Itot
1i2 1z2 5

4Itot102

pkd e
1

` sin21uxkd@22

ux
2

3 exp322kz1ux
2 2 121@24dux. 14.4b2

Here Itot102 5 0K 02d is the total intensity in the plane
z 5 0. Equation 14.4a2 for the total homogeneous
intensity can be rewritten in a more compact form as

Itot
1h2 5 Itot10232p Si1kd 2 2

4

pkd
sin21kd@224 , 14.52

where Si1b2 is the sine integral

Si1b2 ; e
0

b sin t

t
dt. 14.62

Furthermore, in the plane z 5 0, expressions 14.3a2
and 14.3b2 for the homogeneous and the evanescent
contributions reduce to
Uh1x, 02 5
K

p
5Si3k1x 1 d@224 2 Si3k1x 2 d@2246, 14.7a2

Ui1x, 02 5 5
K

p
5p 2 Si3k1x 1 d@224 1 Si3k1x 2 d@2246 for 2 d@2 # x # d@2

2
K

p
5Si3k1x 1 d@224 2 Si3k1x 2 d@2246 otherwise

, 14.7b2
and expression 14.4b2 for the total evanescent inten-
sity reduces to

I tot
1i2 1025Itot102312

2

p
Si1kd 21

4

pkd
sin21kd@224 . 14.82

We can now examine the field U1x, z2, the homoge-
neous contribution Uh1x, z2, the evanescent contribu-
tionUi1x, z2, the total intensity Itot1z2, the total homoge-
neous intensity I tot

1h2 , and the total evanescent intensity
I tot
1i2 1z2 in the near field for specific values of the slit
width d and of the propagation distance z.
Figures 3–5 depict 0U1x, z2 0, 0Uh1x, z2 0, and Ui1x, z2

for z 5 0, z 5 0.02l, z 5 0.1l, and z 5 0.5l. These
figures were computed from Eqs. 14.32 with fast
Fourier transforms. Figures 3, 4, and 5 pertain to
slits of width d 5 0.2l, d 5 1l, and d 5 5l,
respectively. We see that, for z 9 l, changes in the
field U1x, z2 from its initial value U1x, 02 are mostly
caused by the decay of the evanescent contribution
Ui1x, z2 with only slight modifications in the homoge-
can be extended to three-dimensional scalar fields
and to vector fields in a straightforward manner.
In the future we plan to examine the exact bound-

ary-value problem and approximate boundary condi-
tions that can be used to model the near field more
accurately than the Rayleigh–Sommerfeld or Kirch-
hoff boundary conditions.

The author thanks Emil Wolf, Brian Cairns, and
David G. Fischer for their comments on this paper
andWeijianWang for helpful discussions. This work
was supported by the U.S. Army Research Office
under the University Research Initiative Program,
the National Science Foundation, and the New York
State Science and Technology Foundation.

Appendix A: Total Energy Flux and Total
Reactive Energy

In this appendix we discuss the scalar analog of the
complex Poynting theorem30–32 and derive Eqs. 13.92
neous contribution Uh1x, z2. The decay of the evanes-
cent contribution Ui1x, z2 is obviously most important
for the case d 5 0.2l, and, consequently, for this slit
width there is a substantial broadening and decrease
in the amplitude of the field distribution U1x, z2 on
propagation from the plane z 5 0 to z 5 0.5l.
Figures 6–8 show I tot

1h2 and I tot
1i2 102 as functions of the

slit width d and Itot1z2 and I tot
1i2 1z2 as functions of the

propagation distance z. From Fig. 6 we see that, for
slit widths smaller than about half a wavelength, the
total evanescent intensity I tot

1i2 102 in the plane z 5 0
becomes quite appreciable compared with the total
homogeneous intensity I tot

1h2 . However, as is evident
from Fig. 8, I tot

1i2 1z2 decreases very rapidly with z in all
cases.29

5. Conclusion

We have studied the contributions of homogeneous
and evanescent waves to near-field diffraction pat-
terns. It is clear from our general analysis and from
the example presented in Section 4 that changes in
the field for propagation distances much smaller than
a wavelength are dominated by the decay of the
evanescent contribution. Although we have consid-
ered only two-dimensional scalar fields, the analysis
10 June 1995 @ Vol. 34, No. 17 @ APPLIED OPTICS 3061



of the text for the total energy flux and the total
reactive energy.
For a 2-Dmonochromatic scalar field one can define

a complex time-averaged energy flux vector F1x, z2 by
the expression

F1x, z2 ; 2ivaU1x, z2=U*1x, z2, 1A.12

where a is a real, positive constant and = 5 x̂≠@≠x 1

ẑ≠@≠z, x̂ and ẑ being unit vectors along the positive x
and z directions, respectively. Taking the divergence
of Eq. 1A.12 and using Eq. 12.12, we obtain the relation

= ? F1x, z2 1 2iv % 1x, z25 0, 1A.22

% 1x, z2; a3k20U1x, z202 2 0=U1x, z2024. 1A.32

Equation 1A.22 is exactly of the same form as the
complex Poynting theorem in source-free regions.
The energy flux vector F1x, z2 is analogous to the
complex Poynting vector, and the quantity % 1x, z2 is
analogous to the difference between the electric and
the magnetic energy densities that appears in the
complex Poynting theorem.
By integrating Eq. 1A.22 over a finite volume 9

bounded by a surface 6 and applying Gauss’ theo-
rem, we can rewrite the equation in the integral form

e
6

F1x, z2 ? n̂dS 1 2iv e
9

% 1x, z2dV 5 0, 1A.42

where n̂ is the outward unit normal to the volume 9
and dS is an element of surface area. Alternatively,
by taking the real 1Re2 and the imaginary 1Im2 parts of
Eq. 1A.42, we have

e
6

Re3F1x, z2 ? n̂4dS 5 0, 1A.52

e
6

Im3F1x, z2 ? n̂4dS 1 2v e
9

% 1x, z2dV 5 0. 1A.62

Equation 1A.52 shows that there is no net energy flux
through the closed volume, and Eq. 1A.62 gives the
energy balance for the reactive energy stored in the
volume.
From the above considerations we see that the total

energy flux and the total reactive energy across any
plane z 5 const. may be defined by the formulas33

F tot
1h2 1z2 ; e

2`

`

Re3F1x, z2 ? ẑ4dx, 1A.7a2

F tot
1i2 1z2 ; e

2`

`

Im3F1x, z2 ? ẑ4dx, 1A.7b2

respectively. If we now use Eqs. 12.22, 12.32, 1A.12, and
1A.72, we readily find that F tot

1h2 and F tot
1i2 1z2 may be

rewritten in terms of the spectral amplitude function
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a1ux2 as

F tot
1h2 5 4pva e

0ux0#1

11 2 ux
221@20a1ux202dux, 1A.8a2

F tot
1i2 1z2 5 4pva e

0ux0.1

1ux
2 2 121@2 0a1ux2 02

3 exp322kz1ux
2 2 121@24dux, 1A.8b2

which are Eqs. 13.9a2 and 13.9b2 of the text. We used
the superscripts 1h2 and 1i2 here because, from the
limits of integration in Eqs. 1A.82, we see that the total
energy flux F tot

1h2 depends only upon the homogeneous
contribution, and the total reactive energy F tot

1i2 1z2
depends only upon the evanescent contribution. We
also omitted the z argument in F tot

1h2 because the total
energy flux is independent of z.
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